Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Am Chem Soc ; 146(37): 25477-25489, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39226465

RESUMO

The development of tailor-made electrochromic (EC) materials requires a large variety of available substances with properties that precisely match the task. Since the inception of electrochromic metal-organic frameworks (MOFs), the field relies only on a limited set of building blocks, providing the desired electrochromic effect. Herein, we demonstrate for the first time the implementation of a Piccard-type system (N,N,N',N'-benzidinetetrabenzoate) into Zr-MOFs to obtain electrochromic materials. With fast switching rates, high contrast ratio, long-life stability, and exceptional chemical and physical stability, the novel material is on par with inorganic EC material. The new EC system exhibits an ultrahigh contrast from the bleaching state, with transmittance in the visible region >53%, to the colored state with a transmittance of ca. 3%. The 5 µm thick film attained up to 90% of the coloring in 12.5 s and exhibited high electrochemical reversibility. Moreover, the conformational lability of the electrochromic ligand chosen is locked via the topology design of the framework, which is not attainable in the solution. Locked conformations of the redox active linker in distinct polymorphous frameworks (DUT-65 and DUT-66) feature different redox characteristics and opens the door to the overarching control of the oxidation pathway in the Piccard-type systems.

2.
Angew Chem Int Ed Engl ; 63(31): e202403658, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38738600

RESUMO

The high degree of corrosivity and reactivity of bromine, which is released from various sources, poses a serious threat to the environment. Moreover, its coexistence with iodine forming an equilibrium compound, iodine monobromide (IBr) necessitates the selective capture of bromine from halogen mixtures. The electrophilicity of halogens to π-electron rich structures enabled us to strategically design a covalent organic framework for halogen capture, featuring a defined pore environment with localized sorption sites. The higher capture capacity of bromine (4.6 g g-1) over iodine by ~41 % shows its potential in selective capture. Spectroscopic results uncovering the preferential interaction sites are supported by theoretical investigations. The alkyne bridge is a core functionality promoting the selectivity in capture by synergistic physisorption, rationalized by the higher orbital overlap of bromine due to its smaller atomic size as well as reversible chemical interactions. The slip stacking in the structure has further promoted this phenomenon by creating clusters of molecular interaction sites with bromine intercalated between the layers. The inclusion of unsaturated moieties, i.e. triple bonds and the complementary pore geometry offer a promising design strategy for the construction of porous materials for halogen capture.

3.
Angew Chem Int Ed Engl ; 63(14): e202319239, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38314947

RESUMO

Alkaline water electrolysis holds promise for large-scale hydrogen production, yet it encounters challenges like high voltage and limited stability at higher current densities, primarily due to inefficient electron transport kinetics. Herein, a novel cobalt-based metallic heterostructure (Co3Mo3N/Co4N/Co) is designed for excellent water electrolysis. In operando Raman experiments reveal that the formation of the Co3Mo3N/Co4N heterointerface boosts the free water adsorption and dissociation, increasing the available protons for subsequent hydrogen production. Furthermore, the altered electronic structure of the Co3Mo3N/Co4N heterointerface optimizes ΔGH of the nitrogen atoms at the interface. This synergistic effect between interfacial nitrogen atoms and metal phase cobalt creates highly efficient active sites for the hydrogen evolution reaction (HER), thereby enhancing the overall HER performance. Additionally, the heterostructure exhibits a rapid OH- adsorption rate, coupled with great adsorption strength, leading to improved oxygen evolution reaction (OER) performance. Crucially, the metallic heterojunction accelerates electron transport, expediting the afore-mentioned reaction steps and enhancing water splitting efficiency. The Co3Mo3N/Co4N/Co electrocatalyst in the water electrolyzer delivers excellent performance, with a low 1.58 V cell voltage at 10 mA cm-2, and maintains 100 % retention over 100 hours at 200 mA cm-2, surpassing the Pt/C||RuO2 electrolyzer.

4.
Inorg Chem ; 62(26): 10232-10240, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37345737

RESUMO

The iron-based porphyrin complex containing a bispyridine-based hanging unit termed Py2XPFe was previously used as an effective catalyst for the reduction of protons to molecular hydrogen in solution. Here, the molecular compound was immobilized on a modified gold electrode surface and investigated by spectroelectrochemical methods under catalytic conditions. Immobilization of the Py2XPFe was facilitated using a pyridine-based amine linker molecule grafted to the gold electrode by electrochemical amine oxidation. The linker molecule denoted in this report as Pyr-1 allows for effective coordination of the iron porphyrin compound to the modified gold surface through axial coordination of the pyridine component to the Fe center. Resonance Raman spectroelectrochemistry was performed on the immobilized catalyst in pH 7 buffer at increasing cathodic potentials. This facilitates the electrochemical hydrogen evolution reaction (HER) while concurrently allowing for the observation of the v4, v3, and v2 porphyrin marker bands, which are sensitive to oxidation and spin state changes at the metal center. The observed changes in these bands at decreasing potential indicate that the immobilized Py2XPFe exists in the formal high-spin FeIII state before being reduced to the low-spin FeII state resulting from axial interaction with the linker moiety. This FeII state likely acts as the precatalyst for the HER reaction. Surfaced enhanced Raman spectroelectrochemistry was also conducted on the system as the gold electrode provides a sufficient surface enhancement effect so as to observe the bonding nature of the pyridine substituents within the second coordination sphere. As the potential is lowered cathodically, the pyridine ring breathing modes at 999 cm-1 are shown to increase in intensity due to protonation, which reach an intensity saturated limit whereat HER is conducted. This suggests that in pH 7 buffer, the increase in cathodic potentials facilitates protonation of the pyridine-based second coordination sphere. The extent to which protonation occurs can be viewed as a function of decreasing potential due to an increase in proton flux at the immobilized catalyst which, at the required onset potential for catalysis, aids in the reduction of protons to molecular hydrogen.

5.
Inorg Chem ; 62(4): 1667-1678, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36651698

RESUMO

The dissolution of gray selenium in tetraalkylphosphonium acetate ionic liquids was investigated by UV-vis, NMR, and Raman spectroscopy as well as quantum chemical calculations and electrochemical methods. Acetate anions and tetraalkylphosphonium cations facilitate the formation and stabilization of oligoselenides Sen2- and cationic Se species in the ionic liquid phase. Chemical exchange of selenium atoms was demonstrated by variable-temperature 77Se NMR experiments. Additionally, uncharged cycloselenium molecules exist at high selenium concentrations. Upon dilution with ethanol, amorphous red selenium precipitates from the solution. Moreover, crystalline Se1-xTex solid solutions precipitate when elemental tellurium is added to the mixture as confirmed by powder X-ray diffraction and Raman spectroscopy.

6.
Nanotechnology ; 34(24)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827699

RESUMO

Graphene oxide (GO) and reduced graphene oxide have outstanding qualities that could be exploited as reinforcement and antibacterial agents in a plethora of biomedical applications. In this contribution, it is reported the deployment of a polyacrylamide GO-hydrogel composite (GO@pAAm) which was photo-converted and structured by ultra-short laser irradiation using a direct laser writing (DLW) approach. The materials were characterized by Fourier Transform Infrared spectroscopy, scanning electron microscopy and confocal microscopy. The laser structure generates a multi-photo-induced effect: surface foaming and patterning, microdomains with enhanced selective water-swelling and effective GO photo-reduction. A first laser scan seems likely to induce the photo-reduction of GO and subsequent laser pulses trigger the structure/foaming. The photo-reduction of GO is evidenced by Raman spectroscopy by the relatively changing intensities of the D to G signals. Macroscopically by an increase in conductivity (decrease in sheet resistance fromRS-GO@pAAm= 304 ± 20 kΩ sq-1toRS-rGO@pAAm-DLW= 27 ± 8 kΩ sq-1) suggesting a reduction of the material measured by 4-Point-Probe.

7.
Biomacromolecules ; 23(11): 4655-4667, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36215725

RESUMO

The development of compartments for the design of cascade reactions in a local space requires a selective spatiotemporal control. The combination of enzyme-loaded polymersomes with enzymelike units shows a great potential in further refining the diffusion barrier and the type of reactions in nanoreactors. Herein, pH-responsive and ferrocene-containing block copolymers were synthesized to realize pH-stable and multiresponsive polymersomes. Permeable membrane, peroxidase-like behavior induced by the redox-responsive ferrocene moieties and release properties were validated using cyclovoltammetry, dye TMB assay, and rupture of host-guest interactions with ß-cyclodextrin, respectively. Due to the incorporation of different block copolymers, the membrane permeability of glucose oxidase-loaded polymersomes was changed by increasing extracellular glucose concentration and in TMB assay, allowing for the chemoenzymatic cascade reaction. This study presents a potent synthetic, multiresponsive nanoreactor platform with tunable (e.g., redox-responsive) membrane properties for potential application in therapeutics.


Assuntos
Peróxido de Hidrogênio , Polímeros , Metalocenos , Concentração de Íons de Hidrogênio , Polímeros/farmacologia , Oxirredução , Peroxidases
8.
Phys Chem Chem Phys ; 24(43): 26738-26752, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314100

RESUMO

The growth of single hydrogen bubbles at micro-electrodes is studied in an acidic electrolyte over a wide range of concentrations and cathodic potentials. New bubble growth regimes have been identified which differ in terms of whether the bubble evolution proceeds in the presence of a monotonic or oscillatory variation in the electric current and a carpet of microbubbles underneath the bubble. Key features such as the growth law of the bubble radius, the dynamics of the microbubble carpet, the onset time of the oscillations and the oscillation frequencies have been characterized as a function of the concentration and electric potential. Furthermore, the system's response to jumps in the cathodic potential has been studied. Based on the analysis of the forces involved and their scaling with the concentration, potential and electric current, a sound hypothesis is formulated regarding the mechanisms underlying the micro-bubble carpet and oscillations.

9.
Sensors (Basel) ; 22(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062448

RESUMO

We present a facile approach for the determination of the electromagnetic field enhancement of nanostructured TiN electrodes. As model system, TiN with partially collapsed nanotube structure obtained from nitridation of TiO2 nanotube arrays was used. Using surface-enhanced Raman scattering (SERS) spectroscopy, the electromagnetic field enhancement factors (EFs) of the substrate across the optical region were determined. The non-surface binding SERS reporter group azidobenzene was chosen, for which contributions from the chemical enhancement effect can be minimized. Derived EFs correlated with the electronic absorption profile and reached 3.9 at 786 nm excitation. Near-field enhancement and far-field absorption simulated with rigorous coupled wave analysis showed good agreement with the experimental observations. The major optical activity of TiN was concluded to originate from collective localized plasmonic modes at ca. 700 nm arising from the specific nanostructure.

10.
Angew Chem Int Ed Engl ; 61(22): e202117730, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35285126

RESUMO

Clean air is an indispensable prerequisite for human health. The capture of small toxic molecules requires the development of advanced materials for air filtration. Two-dimensional nanomaterials offer highly accessible surface areas but for real-world applications their assembly into well-defined hierarchical mesostructures is essential. DUT-134(Cu) ([Cu2 (dttc)2 ]n , dttc=dithieno[3,2-b : 2',3'-d]thiophene-2,6-dicarboxylate]) is a metal-organic framework forming platelet-shaped particles, that can be organized into complex structures, such as millimeter large free-standing layers (carpets) and tubes. The structured material demonstrates enhanced accessibility of open metal sites and significantly enhanced H2 S adsorption capacity in gas filtering tests compared with traditional bulk analogues.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Adsorção , Pisos e Cobertura de Pisos , Humanos , Estruturas Metalorgânicas/química , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA