Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36846872

RESUMO

Multidirectional or disturbed flow promotes endothelial dysfunction and is associated with early atherogenesis. Here we investigated the role of Wnt signalling in flow-mediated endothelial dysfunction. The expression of Frizzled-4 was higher in cultured human aortic endothelial cells (ECs) exposed to disturbed flow compared to that seen for undisturbed flow, obtained using an orbital shaker. Increased expression was also detected in regions of the porcine aortic arch exposed to disturbed flow. The increased Frizzled-4 expression in cultured ECs was abrogated following knockdown of R-spondin-3. Disturbed flow also increased the nuclear localisation and activation of ß-catenin, an effect that was dependent on Frizzled-4 and R-spondin-3. Inhibition of ß-catenin using the small-molecule inhibitor iCRT5 or knockdown of Frizzled-4 or R-spondin-3 resulted in reduced expression of pro-inflammatory genes in ECs exposed to disturbed flow, as did inhibition of WNT5A signalling. Inhibition of the canonical Wnt pathway had no effect. Inhibition of ß-catenin also reduced endothelial paracellular permeability; this was associated with altered junctional and focal adhesion organisation and cytoskeletal remodelling. These data suggest the presence of an atypical Frizzled-4-ß-catenin pathway that promotes endothelial dysfunction in response to disturbed flow.


Assuntos
Células Endoteliais , beta Catenina , Animais , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Permeabilidade , Suínos , Via de Sinalização Wnt , Receptores Frizzled/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 327(1): H80-H88, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787379

RESUMO

This study investigated the sensitivity and specificity of identifying heart failure with reduced ejection fraction (HFrEF) from measurements of the intensity and timing of arterial pulse waves. Previously validated methods combining ultrafast B-mode ultrasound, plane-wave transmission, singular value decomposition (SVD), and speckle tracking were used to characterize the compression and decompression ("S" and "D") waves occurring in early and late systole, respectively, in the carotid arteries of outpatients with left ventricular ejection fraction (LVEF) < 40%, determined by echocardiography, and signs and symptoms of heart failure, or with LVEF ≥ 50% and no signs or symptoms of heart failure. On average, the HFrEF group had significantly reduced S-wave intensity and energy, a greater interval between the R wave of the ECG and the S wave, a reduced interval between the S and D waves, and an increase in the S-wave shift (SWS), a novel metric that characterizes the shift in timing of the S wave away from the R wave of the ECG and toward the D wave (all P < 0.01). Receiver operating characteristics (ROCs) were used to quantify for the first time how well wave metrics classified individual participants. S-wave intensity and energy gave areas under the ROC of 0.76-0.83, the ECG-S-wave interval gave 0.85-0.88, and the S-wave shift gave 0.88-0.92. Hence the methods, which are simple to use and do not require complex interpretation, provide sensitive and specific identification of HFrEF. If similar results were obtained in primary care, they could form the basis of techniques for heart failure screening.NEW & NOTEWORTHY We show that heart failure with reduced ejection fraction can be detected with excellent sensitivity and specificity in individual patients by using B-mode ultrasound to detect altered pulse wave intensity and timing in the carotid artery.


Assuntos
Insuficiência Cardíaca , Análise de Onda de Pulso , Volume Sistólico , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiopatologia , Função Ventricular Esquerda , Valor Preditivo dos Testes , Eletrocardiografia , Ecocardiografia , Curva ROC
3.
Biochem Biophys Res Commun ; 642: 90-96, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36566567

RESUMO

Calcific aortic valve disease affects the aortic side of the valve, exposed to low magnitude multidirectional ("disturbed) blood flow, more than it affects the ventricular side, exposed to high magnitude uniaxial flow. Overt disease is preceded by endothelial dysfunction and inflammation. Here we investigate the potential role of the transforming growth factor-ß (TGF-ß) receptor ALK5 in this process. Although ECs are always subject to shear stress due to blood flow, and their responses to shear stress are important in healthy valve development and homeostasis, low magnitude multidirectional flow can induce pathophysiological changes. Previous work has shown ALK5 to be an important mechanosensor. ALK5 transduces mechanically sensed signals via the activation of the SMAD2/3 transcriptional modulators. However, it is currently unclear precisely how ALK5-mediated shear stress responses translate into pathological changes under conditions of chronically disturbed flow. Here, we demonstrate that ALK5 mechanosensory signalling influences flow-induced endothelial leukocyte adhesion and paracellular permeability. Low magnitude multidirectional flow resulted in downregulation of the receptor, accompanied by increased SMAD2 phosphorylation, in human umbilical vein endothelial cell (HUVEC) monolayers. These changes correlated with elevated monocyte adhesion and significantly increased transendothelial transport of an albumin-sized tracer. These effects were abolished by inhibition of ALK5 kinase activity. Analysis of ALK5 expression patterns in porcine aortic valve tissue corroborated the findings from cell-based experiments. Together, these results suggest that ALK5 has a role in shear stress-associated cardiovascular disease pathology, emphasising the importance of further mechanistic investigations and supporting it as a potential therapeutic target.


Assuntos
Proteínas Serina-Treonina Quinases , Receptores de Fatores de Crescimento Transformadores beta , Animais , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Suínos
4.
J Anat ; 242(1): 76-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751869

RESUMO

Many studies of cardiovascular function require a realistic representation of vascular geometry. Corrosion casting has been used to acquire such geometries for many decades. However, the fidelity with which this method reproduces vascular anatomy has not been completely determined. Here we report on the non-linear shrinkage characteristics and exothermic properties of Batson's #17, a widely used casting resin, in model systems and in aortas of rats and rabbits. The setting process was captured using high-resolution photography. Shrinkage ranged from 3.4 ± 1.5% of the diameter in 1 ml plastic syringes (inner diameter 4.8 mm) to 19.6 ± 5.6% in the aorta of rats (diameter 1.5-2.6 mm). In addition, aortic curvature and branching angles changed during setting. These effects should be determined and corrected in studies of vascular geometry where high accuracy is required.


Assuntos
Aorta , Modelos Biológicos , Ratos , Coelhos , Animais , Molde por Corrosão
5.
Biotechnol Bioeng ; 120(5): 1254-1268, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36633017

RESUMO

Effects of hemodynamic shear stress on endothelial cells have been extensively investigated using the "swirling well" method, in which cells are cultured in dishes or multiwell plates placed on an orbital shaker. A wave rotates around the well, producing complex patterns of shear. The method allows chronic exposure to flow with high throughput at low cost but has two disadvantages: a number of shear stress characteristics change in a broadly similar way from the center to the edge of the well, and cells at one location in the well may release mediators into the medium that affect the behavior of cells at other locations, exposed to different shears. These properties make it challenging to correlate cell properties with shear. The present study investigated simple alterations to ameliorate these issues. Flows were obtained by numerical simulation. Increasing the volume of fluid in the well-altered dimensional but not dimensionless shear metrics. Adding a central cylinder to the base of the well-forced fluid to flow in a square toroidal channel and reduced multidirectionality. Conversely, suspending a cylinder above the base of the well made the flow highly multidirectional. Increasing viscosity in the latter model increased the magnitude of dimensional but not dimensionless metrics. Finally, tilting the well changed the patterns of different wall shear stress metrics in different ways. Collectively, these methods allow similar flows over most of the cells cultured and/or allow the separation of different shear metrics. A combination of the methods overcomes the limitations of the baseline model.


Assuntos
Técnicas de Cultura de Células , Células Endoteliais , Hemodinâmica , Simulação por Computador , Estresse Mecânico
6.
Biotechnol Bioeng ; 119(1): 72-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612513

RESUMO

Effects of fluid dynamics on cells are often studied by growing the cells on the base of cylindrical wells or dishes that are swirled on the horizontal platform of an orbital shaker. The swirling culture medium applies a shear stress to the cells that varies in magnitude and directionality from the center to the edge of the vessel. Computational fluid dynamics methods are used to simulate the flow and hence calculate shear stresses at the base of the well. The shear characteristics at each radial location are then compared with cell behavior at the same position. Previous simulations have generally ignored effects of surface tension and wetting, and results have only occasionally been experimentally validated. We investigated whether such idealized simulations are sufficiently accurate, examining a commonly-used swirling well configuration. The breaking wave predicted by earlier simulations was not seen, and the edge-to-center difference in shear magnitude (but not directionality) almost disappeared, when surface tension and wetting were included. Optical measurements of fluid height and velocity agreed well only with the computational model that incorporated surface tension and wetting. These results demonstrate the importance of including accurate fluid properties in computational models of the swirling well method.


Assuntos
Técnicas de Cultura de Células , Simulação por Computador , Hidrodinâmica , Modelos Biológicos , Células Endoteliais/citologia , Resistência ao Cisalhamento , Estresse Mecânico
7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897652

RESUMO

Haemodynamic wall shear stress varies from site to site within the arterial system and is thought to cause local variation in endothelial permeability to macromolecules. Our aim was to investigate mechanisms underlying the changes in paracellular permeability caused by different patterns of shear stress in long-term culture. We used the swirling well system and a substrate-binding tracer that permits visualisation of transport at the cellular level. Permeability increased in the centre of swirled wells, where flow is highly multidirectional, and decreased towards the edge, where flow is more uniaxial, compared to static controls. Overall, there was a reduction in permeability. There were also decreases in early- and late-stage apoptosis, proliferation and mitosis, and there were significant correlations between the first three and permeability when considering variation from the centre to the edge under flow. However, data from static controls did not fit the same relation, and a cell-by-cell analysis showed that <5% of uptake under shear was associated with each of these events. Nuclear translocation of NF-κB p65 increased and then decreased with the duration of applied shear, as did permeability, but the spatial correlation between them was not significant. Application of an NO synthase inhibitor abolished the overall decrease in permeability caused by chronic shear and the difference in permeability between the centre and the edge of the well. Hence, shear and paracellular permeability appear to be linked by NO synthesis and not by apoptosis, mitosis or inflammation. The effect was mediated by an increase in transport through tricellular junctions.


Assuntos
Endotélio Vascular , Mitose , Humanos , Inflamação , Permeabilidade , Estresse Mecânico
8.
Radiology ; 291(3): 642-650, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30990382

RESUMO

Background Variations in lymph node (LN) microcirculation can be indicative of metastasis. The identification and quantification of metastatic LNs remains essential for prognosis and treatment planning, but a reliable noninvasive imaging technique is lacking. Three-dimensional super-resolution (SR) US has shown potential to noninvasively visualize microvascular networks in vivo. Purpose To study the feasibility of three-dimensional SR US imaging of rabbit LN microvascular structure and blood flow by using microbubbles. Materials and Methods In vivo studies were carried out to image popliteal LNs of two healthy male New Zealand white rabbits aged 6-8 weeks. Three-dimensional, high-frame-rate, contrast material-enhanced US was achieved by mechanically scanning with a linear imaging probe. Individual microbubbles were identified, localized, and tracked to form three-dimensional SR images and super-resolved velocity maps. Acoustic subaperture processing was used to improve image contrast and to generate enhanced power Doppler and color Doppler images. Vessel size and blood flow velocity distributions were evaluated and assessed by using Student paired t test. Results SR images revealed microvessels in the rabbit LN, with branches clearly resolved when separated by 30 µm, which is less than half of the acoustic wavelength and not resolvable by using power or color Doppler. The apparent size distribution of most vessels in the SR images was below 80 µm and agrees with micro-CT data, whereas most of those detected with Doppler techniques were larger than 80 µm in the images. The blood flow velocity distribution indicated that most of the blood flow in rabbit popliteal LN was at velocities lower than 5 mm/sec. Conclusion Three-dimensional super-resolution US imaging using microbubbles allows noninvasive nonionizing visualization and quantification of lymph node microvascular structures and blood flow dynamics with resolution below the wave diffraction limit. This technology has potential for studying the physiologic functions of the lymph system and for clinical detection of lymph node metastasis. Published under a CC BY 4.0 license. Online supplemental material is available for this article.


Assuntos
Imageamento Tridimensional/métodos , Linfonodos , Microbolhas , Ultrassonografia/métodos , Animais , Estudos de Viabilidade , Linfonodos/irrigação sanguínea , Linfonodos/diagnóstico por imagem , Masculino , Microvasos/diagnóstico por imagem , Coelhos
9.
Circ Res ; 119(3): 450-62, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27245171

RESUMO

RATIONALE: Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. OBJECTIVE: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. METHODS AND RESULTS: The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. CONCLUSIONS: TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development.


Assuntos
Aterosclerose/metabolismo , Velocidade do Fluxo Sanguíneo/fisiologia , Endotélio Vascular/metabolismo , Proteínas Nucleares/biossíntese , Proteína 1 Relacionada a Twist/biossíntese , Animais , Aterosclerose/patologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Suínos , Peixe-Zebra
10.
Am J Physiol Heart Circ Physiol ; 313(5): H959-H973, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754719

RESUMO

Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow. Endothelial monolayers were cultured under static conditions or on an orbital shaker producing different flow profiles in different parts of the wells. Fluorescent tracers that bound to the substrate after crossing the endothelium were used to identify transport pathways. Maps of tracer distribution were compared with numerical simulations of flow to determine effects of different shear stress metrics on permeability. Albumin-sized tracers dominantly crossed the cultured endothelium via junctions between neighboring cells, high-density lipoprotein-sized tracers crossed at tricellular junctions, and low-density lipoprotein-sized tracers crossed through cells. Cells aligned close to the angle that minimized shear stresses across their long axis. The rate of paracellular transport under flow correlated with the magnitude of these minimized transverse stresses, whereas transport across cells was uniformly reduced by all types of flow. These results contradict the long-standing two-pore theory of solute transport across microvessel walls and the consensus view that endothelial cells align with the mean shear vector. They suggest that endothelial cells minimize transverse shear, supporting its postulated proatherogenic role. Preliminary data show that similar tracer techniques are practicable in vivo.NEW & NOTEWORTHY Solutes of increasing size crossed cultured endothelium through intercellular junctions, through tricellular junctions, or transcellularly. Cells aligned to minimize the shear stress acting across their long axis. Paracellular transport correlated with the level of this minimized shear, but transcellular transport was reduced uniformly by flow regardless of the shear profile.


Assuntos
Endotélio Vascular/metabolismo , Substâncias Macromoleculares/metabolismo , Algoritmos , Animais , Aorta/citologia , Aorta/metabolismo , Transporte Biológico Ativo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/ultraestrutura , Junções Intercelulares/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Mecânico , Suínos
12.
J Biomech Eng ; 137(10): 101003, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26201866

RESUMO

Assessing the anatomical correlation of atherosclerosis with biomechanical localizing factors is hindered by spatial autocorrelation (SA), wherein neighboring arterial regions tend to have similar properties rather than being independent, and by the use of aggregated data, which artificially inflates correlation coefficients. Resampling data at lower resolution or reducing degrees-of-freedom in significance tests negated effects of SA but only in artificial situations where it occurred at a single length scale. Using Fourier or wavelet transforms to generate autocorrelation-preserving surrogate datasets, and thus to compute the null distribution, avoided this problem. Bootstrap methods additionally circumvented the errors caused by aggregating data. The bootstrap technique showed that wall shear stress (WSS) was significantly correlated with atherosclerotic lesion frequency and endothelial nuclear elongation, but not with the permeability of the arterial wall to albumin, in immature rabbits.


Assuntos
Artérias , Análise Espacial , Estatística como Assunto/métodos , Albuminas/metabolismo , Animais , Artérias/metabolismo , Artérias/fisiologia , Análise de Fourier , Permeabilidade , Coelhos , Resistência ao Cisalhamento , Estresse Mecânico , Análise de Ondaletas
13.
IEEE Trans Biomed Eng ; PP2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990741

RESUMO

OBJECTIVE: Super-resolution ultrasound (SRUS) imaging through localizing and tracking microbubbles, also known as ultrasound localization microscopy (ULM), can produce sub-diffraction resolution images of micro-vessels. We have recently demonstrated 3-D selective SRUS with a matrix array and phase change contrast agents (PCCAs). However, this method is limited to a small field of view (FOV) and by the complex hardware required. METHOD: This study proposed 3-D acoustic wave sparsely activated localization microscopy (AWSALM) using PCCAs and a 128+128 row-column-addressed (RCA) array, which offers ultrafast acquisition with over 6 times larger FOV and 4 times reduction in hardware complexity than a 1024-element matrix array. We first validated this method on an in-vitro microflow phantom and subsequently demonstrated non-invasively on a rabbit kidney in-vivo. RESULTS: Our results show that 3-D AWSALM images of the phantom covering a 25×25×40 mm 3 volume can be generated under 5 seconds with an 8 times resolution improvement over the system point spread function. The full volume of the rabbit kidney can be covered to generate 3-D microvascular structure, flow speed and direction super-resolution maps under 15 seconds, combining the large FOV of RCA with the high resolution of SRUS. Additionally, 3-D AWSALM is selective and can visualize the microvasculature within the activation volume and downstream vessels in isolation. Sub-sets of the kidney microvasculature can be imaged through selective activation of PCCAs. CONCLUSION: Our study demonstrates large FOV 3-D AWSALM using an RCA probe. SIGNIFICANCE: 3-D AWSALM offers an unique in-vivo imaging tool for fast, selective and large FOV vascular flow mapping.

14.
Ultrasound Med Biol ; 50(7): 1045-1057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38702285

RESUMO

OBJECTIVE: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS: To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS: Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION: It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.


Assuntos
Imageamento Tridimensional , Ultrassonografia , Coelhos , Animais , Humanos , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Desenho de Equipamento , Imagens de Fantasmas , Pele/diagnóstico por imagem , Estudos de Viabilidade
15.
Invest Radiol ; 59(5): 379-390, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843819

RESUMO

OBJECTIVE: The aim of this study is to demonstrate 3-dimensional (3D) acoustic wave sparsely activated localization microscopy (AWSALM) of microvascular flow in vivo using phase change contrast agents (PCCAs). MATERIALS AND METHODS: Three-dimensional AWSALM using acoustically activable PCCAs was evaluated on a crossed tube microflow phantom, the kidney of New Zealand White rabbits, and the brain of C57BL/6J mice through intact skull. A mixture of C 3 F 8 and C 4 F 10 low-boiling-point fluorocarbon gas was used to generate PCCAs with an appropriate activation pressure. A multiplexed 8-MHz matrix array connected to a 256-channel ultrasound research platform was used for transmitting activation and imaging ultrasound pulses and recording echoes. The in vitro and in vivo echo data were subsequently beamformed and processed using a set of customized algorithms for generating 3D super-resolution ultrasound images through localizing and tracking activated contrast agents. RESULTS: With 3D AWSALM, the acoustic activation of PCCAs can be controlled both spatially and temporally, enabling contrast on demand and capable of revealing 3D microvascular connectivity. The spatial resolution of the 3D AWSALM images measured using Fourier shell correlation is 64 µm, presenting a 9-time improvement compared with the point spread function and 1.5 times compared with half the wavelength. Compared with the microbubble-based approach, more signals were localized in the microvasculature at similar concentrations while retaining sparsity and longer tracks in larger vessels. Transcranial imaging was demonstrated as a proof of principle of PCCA activation in the mouse brain with 3D AWSALM. CONCLUSIONS: Three-dimensional AWSALM generates volumetric ultrasound super-resolution microvascular images in vivo with spatiotemporal selectivity and enhanced microvascular penetration.


Assuntos
Meios de Contraste , Microscopia , Camundongos , Animais , Coelhos , Camundongos Endogâmicos C57BL , Som , Acústica , Ultrassonografia/métodos , Microbolhas
16.
J Biomech Eng ; 135(2): 021023, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23445068

RESUMO

Studies investigating the relation between the focal nature of atherosclerosis and hemodynamic factors are employing increasingly rigorous approaches to map the disease and calculate hemodynamic metrics. However, no standardized methodology exists to quantitatively compare these distributions. We developed a statistical technique that can be used to determine if hemodynamic and lesion maps are significantly correlated. The technique, which is based on a surrogate data analysis, does not require any assumptions (such as linearity) on the nature of the correlation. Randomized sampling was used to ensure the independence of data points, another basic assumption of commonly-used statistical methods that is often disregarded. The novel technique was used to compare previously-obtained maps of lesion prevalence in aortas of immature and mature cholesterol-fed rabbits to corresponding maps of wall shear stress, averaged across several animals in each age group. A significant spatial correlation was found in the proximal descending thoracic aorta, but not further downstream. Around intercostal branch openings the correlation was borderline significant in immature but not in mature animals. The results confirm the need for further investigation of the relation between the localization of atherosclerosis and blood flow, in conjunction with appropriate statistical techniques such as the method proposed here.


Assuntos
Aterosclerose/fisiopatologia , Hemodinâmica , Estatística como Assunto/métodos , Animais , Modelos Lineares , Coelhos , Reprodutibilidade dos Testes , Análise Espacial
17.
J R Soc Interface ; 20(205): 20230222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37608710

RESUMO

Effects of mechanical stress on the permeability of vascular endothelium are important to normal physiology and in the development of atherosclerosis. Here we elucidate novel effects using commercially available and modified hollow-fibre bioreactors, in which endothelial cells form confluent monolayers lining plastic capillaries with porous walls, contained in a cartridge. The capillaries were perfused with a near-aortic waveform, and permeability was assessed by the movement of rhodamine-labelled albumin from the intracapillary to the extracapillary space. Permeability was increased by acute application of shear stress and decreased by chronic shear stress compared with a static control: this has previously been shown only for multidirectional flows. Increasing viscosity reduced permeability under both acute and chronic shear; since shear rate remained unchanged, these effects resulted from altered shear stress. Reducing pulsatility increased permeability, contrary to the widely held assumption that flow which is highly oscillatory causes endothelial dysfunction. Chronic convection across the monolayer increased effective permeability more than could be explained by the addition of advective transport, contrary to results from previous acute experiments. The off-the-shelf and modified bioreactors provide an excellent tool for investigating the biomechanics of endothelial permeability and have revealed novel effects of flow duration, viscosity, pulsatility and transmural flow.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Reatores Biológicos , Endotélio Vascular , Permeabilidade
18.
Ultrasound Med Biol ; 49(2): 473-488, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36335055

RESUMO

Arterial pulse waves contain clinically useful information about cardiac performance, arterial stiffness and vessel tone. Here we describe a novel method for non-invasively assessing wave properties, based on measuring changes in blood flow velocity and arterial wall diameter during the cardiac cycle. Velocity and diameter were determined by tracking speckles in successive B-mode images acquired with an ultrafast scanner and plane-wave transmission. Blood speckle was separated from tissue by singular value decomposition and processed to correct biases in ultrasound imaging velocimetry. Results obtained in the rabbit aorta were compared with a conventional analysis based on blood velocity and pressure, employing measurements obtained with a clinical intra-arterial catheter system. This system had a poorer frequency response and greater lags but the pattern of net forward-traveling and backward-traveling waves was consistent between the two methods. Errors in wave speed were also similar in magnitude, and comparable reductions in wave intensity and delays in wave arrival were detected during ventricular dysfunction. The non-invasive method was applied to the carotid artery of a healthy human participant and gave a wave speed and patterns of wave intensity consistent with earlier measurements. The new system may have clinical utility in screening for heart failure.


Assuntos
Artérias Carótidas , Disfunção Ventricular , Animais , Humanos , Coelhos , Ultrassonografia/métodos , Velocidade do Fluxo Sanguíneo , Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Primitiva , Pressão Sanguínea , Análise de Onda de Pulso
19.
IEEE Trans Med Imaging ; 42(4): 1056-1067, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399587

RESUMO

Perfusion by the microcirculation is key to the development, maintenance and pathology of tissue. Its measurement with high spatiotemporal resolution is consequently valuable but remains a challenge in deep tissue. Ultrasound Localization Microscopy (ULM) provides very high spatiotemporal resolution but the use of microbubbles requires low contrast agent concentrations, a long acquisition time, and gives little control over the spatial and temporal distribution of the microbubbles. The present study is the first to demonstrate Acoustic Wave Sparsely-Activated Localization Microscopy (AWSALM) and fast-AWSALM for in vivo super-resolution ultrasound imaging, offering contrast on demand and vascular selectivity. Three different formulations of acoustically activatable contrast agents were used. We demonstrate their use with ultrasound mechanical indices well within recommended safety limits to enable fast on-demand sparse activation and destruction at very high agent concentrations. We produce super-localization maps of the rabbit renal vasculature with acquisition times between 5.5 s and 0.25 s, and a 4-fold improvement in spatial resolution. We present the unique selectivity of AWSALM in visualizing specific vascular branches and downstream microvasculature, and we show super-localized kidney structures in systole (0.25 s) and diastole (0.25 s) with fast-AWSALM outperforming microbubble based ULM. In conclusion, we demonstrate the feasibility of fast and selective imaging of microvascular dynamics in vivo with subwavelength resolution using ultrasound and acoustically activatable nanodroplet contrast agents.


Assuntos
Meios de Contraste , Rim , Animais , Coelhos , Ultrassonografia/métodos , Rim/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Microscopia Acústica
20.
J Mech Behav Biomed Mater ; 137: 105545, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368188

RESUMO

Complex patterns of hemodynamic wall shear stress occur in regions of arterial branching and curvature. Areas within these regions can be highly susceptible to atherosclerosis. Although many studies have characterized the response of vascular endothelial cells to shear stress in a categorical manner, our study herein addresses the need of characterizing endothelial behaviors over a continuous range of shear stress conditions that reflect the extensive variations seen in the vasculature. We evaluated the response of human umbilical vein endothelial cell monolayers to orbital flow at 120, 250, and 350 revolutions per minute (RPM) for 24 and 72 h. The orbital shaker model uniquely provides a continuous range of shear stress conditions from low and multidirectional at the center of each well of a culture plate to high and unidirectional at the periphery. We found distinct patterns of endothelial nuclear area, nuclear major and minor diameters, nuclear aspect ratio, and expression of endothelial nitric oxide synthase over this range of shear conditions and relationships were fit with linear and, where appropriate, power functions. Nuclear area was particularly sensitive with increases in the low and multidirectional WSS region that incrementally decreased as WSS became higher in magnitude and more unidirectional over the radius of the cell layers. The patterns of all endothelial behaviors exhibited high correlations (positive and negative) with metrics of shear stress magnitude and directionality that have been shown to strongly associate with atherosclerosis. Our findings demonstrate the exquisite sensitivity of these endothelial behaviors to incremental changes in shear stress magnitude and directionality, and provide critical quantitation of these relationships for predicting the susceptibility of an arterial segment to diseases such as atherosclerosis, particularly within complex flow environments in the vasculature such as around bifurcations.


Assuntos
Aterosclerose , Óxido Nítrico Sintase Tipo III , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Endotélio Vascular , Estresse Mecânico , Células Endoteliais da Veia Umbilical Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA