Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
N Engl J Med ; 385(12): e35, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34525286

RESUMO

BACKGROUND: Although Zika virus (ZIKV) infection is typically self-limiting, other associated complications such as congenital birth defects and the Guillain-Barré syndrome are well described. There are no approved vaccines against ZIKV infection. METHODS: In this phase 1, open-label clinical trial, we evaluated the safety and immunogenicity of a synthetic, consensus DNA vaccine (GLS-5700) encoding the ZIKV premembrane and envelope proteins in two groups of 20 participants each. The participants received either 1 mg or 2 mg of vaccine intradermally, with each injection followed by electroporation (the use of a pulsed electric field to introduce the DNA sequence into cells) at baseline, 4 weeks, and 12 weeks. RESULTS: The median age of the participants was 38 years, and 60% were women; 78% were White and 22% Black; in addition, 30% were Hispanic. At the interim analysis at 14 weeks (i.e., after the third dose of vaccine), no serious adverse events were reported. Local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants. After the third dose of vaccine, binding antibodies (as measured on enzyme-linked immunosorbent assay) were detected in all the participants, with geometric mean titers of 1642 and 2871 in recipients of 1 mg and 2 mg of vaccine, respectively. Neutralizing antibodies developed in 62% of the samples on Vero-cell assay. On neuronal-cell assay, there was 90% inhibition of ZIKV infection in 70% of the serum samples and 50% inhibition in 95% of the samples. The intraperitoneal injection of postvaccination serum protected 103 of 112 IFNAR knockout mice (bred with deletion of genes encoding interferon-α and interferon-ß receptors) (92%) that were challenged with a lethal dose of ZIKV-PR209 strain; none of the mice receiving baseline serum survived the challenge. Survival was independent of the neutralization titer. CONCLUSIONS: In this phase 1, open-label clinical trial, a DNA vaccine elicited anti-ZIKV immune responses. Further studies are needed to better evaluate the safety and efficacy of the vaccine. (Funded by GeneOne Life Science and others; ZIKA-001 ClinicalTrials.gov number, NCT02809443.).


Assuntos
Anticorpos Neutralizantes/sangue , Imunogenicidade da Vacina , Vacinas de DNA , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Adulto , Animais , Anticorpos Antivirais/sangue , Feminino , Humanos , Injeções Intradérmicas/efeitos adversos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Linfócitos T/fisiologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Infecção por Zika virus/imunologia
3.
J Immunol ; 209(1): 118-127, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750334

RESUMO

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have demonstrated strong immunogenicity and protection against severe disease, concerns about the duration and breadth of these responses remain. In this study, we show that codelivery of plasmid-encoded adenosine deaminase-1 (pADA) with SARS-CoV-2 spike glycoprotein DNA enhances immune memory and durability in vivo. Coimmunized mice displayed increased spike-specific IgG of higher affinity and neutralizing capacity as compared with plasmid-encoded spike-only-immunized animals. Importantly, pADA significantly improved the longevity of these enhanced responses in vivo. This coincided with durable increases in frequencies of plasmablasts, receptor-binding domain-specific memory B cells, and SARS-CoV-2-specific T follicular helper cells. Increased spike-specific T cell polyfunctionality was also observed. Notably, animals coimmunized with pADA had significantly reduced viral loads compared with their nonadjuvanted counterparts in a SARS-CoV-2 infection model. These data suggest that pADA enhances immune memory and durability and supports further translational studies.


Assuntos
COVID-19 , Vacinas Virais , Adenosina Desaminase/genética , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2
4.
Biochemistry ; 62(14): 2115-2127, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37341186

RESUMO

Host cell infection by SARS-CoV-2, similar to that by HIV-1, is driven by a conformationally metastable and highly glycosylated surface entry protein complex, and infection by these viruses has been shown to be inhibited by the mannose-specific lectins cyanovirin-N (CV-N) and griffithsin (GRFT). We discovered in this study that CV-N not only inhibits SARS-CoV-2 infection but also leads to irreversibly inactivated pseudovirus particles. The irreversibility effect was revealed by the observation that pseudoviruses first treated with CV-N and then washed to remove all soluble lectin did not recover infectivity. The infection inhibition of SARS-CoV-2 pseudovirus mutants with single-site glycan mutations in spike suggested that two glycan clusters in S1 are important for both CV-N and GRFT inhibition: one cluster associated with the RBD (receptor binding domain) and the second with the S1/S2 cleavage site. We observed lectin antiviral effects with several SARS-CoV-2 pseudovirus variants, including the recently emerged omicron, as well as a fully infectious coronavirus, therein reflecting the breadth of lectin antiviral function and the potential for pan-coronavirus inactivation. Mechanistically, observations made in this work indicate that multivalent lectin interaction with S1 glycans is likely a driver of the lectin infection inhibition and irreversible inactivation effect and suggest the possibility that lectin inactivation is caused by an irreversible conformational effect on spike. Overall, lectins' irreversible inactivation of SARS-CoV-2, taken with their breadth of function, reflects the therapeutic potential of multivalent lectins targeting the vulnerable metastable spike before host cell encounter.


Assuntos
COVID-19 , Lectinas , Humanos , Lectinas/farmacologia , Lectinas/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Antivirais/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo
5.
PLoS Pathog ; 17(11): e1010034, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762717

RESUMO

Siglec-9 is an MHC-independent inhibitory receptor expressed on a subset of natural killer (NK) cells. Siglec-9 restrains NK cytotoxicity by binding to sialoglycans (sialic acid-containing glycans) on target cells. Despite the importance of Siglec-9 interactions in tumor immune evasion, their role as an immune evasion mechanism during HIV infection has not been investigated. Using in vivo phenotypic analyses, we found that Siglec-9+ CD56dim NK cells, during HIV infection, exhibit an activated phenotype with higher expression of activating receptors and markers (NKp30, CD38, CD16, DNAM-1, perforin) and lower expression of the inhibitory receptor NKG2A, compared to Siglec-9- CD56dim NK cells. We also found that levels of Siglec-9+ CD56dim NK cells inversely correlate with viral load during viremic infection and CD4+ T cell-associated HIV DNA during suppressed infection. Using in vitro cytotoxicity assays, we confirmed that Siglec-9+ NK cells exhibit higher cytotoxicity towards HIV-infected cells compared to Siglec-9- NK cells. These data are consistent with the notion that Siglec-9+ NK cells are highly cytotoxic against HIV-infected cells. However, blocking Siglec-9 enhanced NK cells' ability to lyse HIV-infected cells, consistent with the known inhibitory function of the Siglec-9 molecule. Together, these data support a model in which the Siglec-9+ CD56dim NK subpopulation is highly cytotoxic against HIV-infected cells even whilst being restrained by the inhibitory effects of Siglec-9. To harness the cytotoxic capacity of the Siglec-9+ NK subpopulation, which is dampened by Siglec-9, we developed a proof-of-concept approach to selectively disrupt Siglec/sialoglycan interactions between NK and HIV-infected cells. We achieved this goal by conjugating Sialidase to several HIV broadly neutralizing antibodies. These conjugates selectively desialylated HIV-infected cells and enhanced NK cells' capacity to kill them. In summary, we identified a novel, glycan-based interaction that may contribute to HIV-infected cells' ability to evade NK immunosurveillance and developed an approach to break this interaction.


Assuntos
Antígenos CD/metabolismo , Antígeno CD56/imunologia , Infecções por HIV/patologia , HIV/fisiologia , Células Matadoras Naturais/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Carga Viral , Viremia/patologia , Antígenos CD/genética , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Células Matadoras Naturais/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Viremia/imunologia , Viremia/metabolismo , Viremia/virologia
6.
Mol Ther ; 30(5): 1966-1978, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34774754

RESUMO

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.7% leaf protein), have physical characteristics and taste/flavor like conventional gums, and no protein was lost during gum compression. CTB-ACE2 gum efficiently (>95%) inhibited entry of lentivirus spike or VSV-spike pseudovirus into Vero/CHO cells when quantified by luciferase or red fluorescence. Incubation of CTB-ACE2 microparticles reduced SARS-CoV-2 virus count in COVID-19 swab/saliva samples by >95% when evaluated by microbubbles (femtomolar concentration) or qPCR, demonstrating both virus trapping and blocking of cellular entry. COVID-19 saliva samples showed low or undetectable ACE2 activity when compared with healthy individuals (2,582 versus 50,126 ΔRFU; 27 versus 225 enzyme units), confirming greater susceptibility of infected patients for viral entry. CTB-ACE2 activity was completely inhibited by pre-incubation with SARS-CoV-2 receptor-binding domain, offering an explanation for reduced saliva ACE2 activity among COVID-19 patients. Chewing gum with virus-trapping proteins offers a general affordable strategy to protect patients from most oral virus re-infections through debulking or minimizing transmission to others.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Animais , Goma de Mascar , Cricetinae , Cricetulus , Procedimentos Cirúrgicos de Citorredução , Humanos , Ligação Proteica , SARS-CoV-2 , Saliva/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
7.
J Infect Dis ; 225(11): 1923-1932, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35079784

RESUMO

BACKGROUND: Additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are safe and effective as primary vaccines and boosters remain urgently needed to combat the coronavirus disease 2019 (COVID-19) pandemic. We describe safety and durability of immune responses following 2 primary doses and a homologous booster dose of an investigational DNA vaccine (INO-4800) targeting full-length spike antigen. METHODS: Three dosage strengths of INO-4800 (0.5 mg, 1.0 mg, and 2.0 mg) were evaluated in 120 age-stratified healthy adults. Intradermal injection of INO-4800 followed by electroporation at 0 and 4 weeks preceded an optional booster 6-10.5 months after the second dose. RESULTS: INO-4800 appeared well tolerated with no treatment-related serious adverse events. Most adverse events were mild and did not increase in frequency with age and subsequent dosing. A durable antibody response was observed 6 months following the second dose; a homologous booster dose significantly increased immune responses. Cytokine-producing T cells and activated CD8+ T cells with lytic potential were significantly increased in the 2.0-mg dose group. CONCLUSIONS: INO-4800 was well tolerated in a 2-dose primary series and homologous booster in all adults, including elderly participants. These results support further development of INO-4800 for use as primary vaccine and booster. CLINICAL TRIALS REGISTRATION: NCT04336410.


Assuntos
COVID-19 , Vacinas de DNA , Adulto , Idoso , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinação/efeitos adversos , Vacinas de DNA/efeitos adversos
8.
J Immunol ; 205(3): 648-660, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591390

RESUMO

mAbs are a possible adjunct to vaccination and drugs in treatment of influenza virus infection. However, questions remain whether small animal models accurately predict efficacy in humans. We have established the pig, a large natural host animal for influenza, with many physiological similarities to humans, as a robust model for testing mAbs. We show that a strongly neutralizing mAb (2-12C) against the hemagglutinin head administered prophylactically at 15 mg/kg reduced viral load and lung pathology after pandemic H1N1 influenza challenge. A lower dose of 1 mg/kg of 2-12C or a DNA plasmid-encoded version of 2-12C reduced pathology and viral load in the lungs but not viral shedding in nasal swabs. We propose that the pig influenza model will be useful for testing candidate mAbs and emerging delivery platforms prior to human trials.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/tratamento farmacológico , Suínos
9.
Dermatol Ther ; 35(7): e15538, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35477952

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment option for patients with refractory cutaneous T-cell lymphoma (CTCL) through replacement of the bone marrow responsible for lymphoma cells and possibly induction of a graft-versus-lymphoma effect. However, allo-HSCT is not always curative; relapse of CTCL occurs in about half of patients post-transplant. Treatment of relapsed CTCL after allo-HSCT is challenging because post-transplant patients are at high risk of graft-versus-host disease, and this condition may be precipitated or exacerbated by standard CTCL therapies. The benefit of each potential therapy must therefore be weighed against its risk of graft versus host disease (GVHD). In this article, we review the management of relapsed CTCL after allo-HSCT. We begin with an exemplative patient whose relapsed Sezary syndrome was successfully treated without development of GVHD. We also report high-throughput T-cell receptor sequencing data obtained during the patient's disease relapse and remission. We then review general guidelines for management of relapsed CTCL and summarize all reported cases and outcomes of relapsed CTCL after transplant. We conclude by reviewing the current CTCL therapies and their risk of GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Linfoma de Células T , Micose Fungoide , Neoplasias Cutâneas , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Linfoma de Células T/patologia , Micose Fungoide/etiologia , Recidiva Local de Neoplasia/terapia , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/terapia , Transplante Homólogo/efeitos adversos
10.
Instr Course Lect ; 71: 413-425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35254798

RESUMO

Vertebral body tethering is a nonfusion technique for the surgical correction of adolescent idiopathic scoliosis. For skeletally immature patients for whom vertebral body tethering is indicated, it is an alternative option to the gold standard posterior spinal fusion (PSF) and may at least partially preserve motion in instrumented segments of the spine. Benefits of the procedure include the possibility of avoiding the long-term sequelae of PSF such as adjacent segment disease and proximal junctional kyphosis. Recent retrospective case series of vertebral body tethering have shown promising results with correction rates up to 70% but greater variability in outcomes compared with PSF. The complication profile of the procedure also appears to differ from PSF with tether breakage and overcorrection as primary concerns in addition to approach-related complications. Although early outcomes have been promising, additional studies to optimize surgical timing, long-term outcomes, and the possible role of tethering in the more skeletally mature patient are required.


Assuntos
Escoliose , Corpo Vertebral , Adolescente , Humanos , Estudos Retrospectivos , Escoliose/cirurgia , Fusão Vertebral/métodos , Vértebras Torácicas/cirurgia , Resultado do Tratamento , Corpo Vertebral/cirurgia
11.
Infect Immun ; 89(10): e0072820, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34152830

RESUMO

Malaria infects millions of people every year, and despite recent advances in controlling disease spread, such as vaccination, it remains a global health concern. The circumsporozoite protein (CSP) has long been acknowledged as a key target in antimalarial immunity. Leveraging the DNA vaccine platform against this formidable pathogen, the following five synthetic DNA vaccines encoding variations of CSP were designed and studied: 3D7, GPI1, ΔGPI, TM, and DD2. Among the single CSP antigen constructs, a range of immunogenicity was observed with ΔGPI generating the most robust immunity. In an intravenous (i.v.) sporozoite challenge, the best protection among vaccinated mice was achieved by ΔGPI, which performed almost as well as the monoclonal antibody 311 (MAb 311) antibody control. Further analyses revealed that ΔGPI develops high-molecular-weight multimers in addition to monomeric CSP. We then compared the immunity generated by ΔGPI versus synDNA mimics for the antimalaria vaccines RTS,S and R21. The anti-CSP antibody responses induced were similar among these three immunogens. T cell responses demonstrated that ΔGPI induced a more focused anti-CSP response. In an infectious mosquito challenge, all three of these constructs generated inhibition of liver-stage infection as well as immunity from blood-stage parasitemia. This study demonstrates that synDNA mimics of complex malaria immunogens can provide substantial protection as can a novel synDNA vaccine ΔGPI.


Assuntos
Imunogenicidade da Vacina/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária/imunologia , Proteínas de Protozoários/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Vacinação/métodos
12.
J Am Acad Dermatol ; 84(3): 587-595, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33352267

RESUMO

Cutaneous T cell lymphomas (CTCLs) are malignancies of skin-trafficking T cells. Patients with advanced CTCL manifest immune dysfunction that predisposes to infection and suppresses the antitumor immune response. Therapies that stimulate immunity have produced superior progression-free survival compared with conventional chemotherapy, reinforcing the importance of addressing the immune deficient state in the care of patients with CTCL. Recent research has better defined the pathogenesis of these immune deficits, explaining the mechanisms of disease progression and revealing potential therapeutic targets. The features of the malignant cell in mycosis fungoides and Sézary syndrome are now significantly better understood, including the T helper 2 cell phenotype, regulatory T cell cytokine production, immune checkpoint molecule expression, chemokine receptors, and interactions with the microenvironment. The updated model of CTCL immunopathogenesis provides understanding into clinical progression and therapeutic response.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Reconstituição Imune , Micose Fungoide/tratamento farmacológico , Síndrome de Sézary/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Progressão da Doença , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade Celular/efeitos dos fármacos , Microbiota/imunologia , Micose Fungoide/imunologia , Micose Fungoide/mortalidade , Micose Fungoide/patologia , Intervalo Livre de Progressão , Síndrome de Sézary/imunologia , Síndrome de Sézary/mortalidade , Síndrome de Sézary/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/microbiologia , Pele/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
13.
J Am Acad Dermatol ; 84(3): 597-604, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33352268

RESUMO

In the past few decades, immunotherapy has emerged as an effective therapeutic option for patients with cutaneous T cell lymphoma (CTCL). CTCL is characterized by progressive impairment of multiple arms of the immune system. Immunotherapy targets these deficits to stimulate a more robust antitumor response, thereby both clearing the malignant T cells and repairing the immune dysfunction. By potentiating rather than suppressing the immune system, immunotherapy can result in longer treatment responses than alternatives such as chemotherapy. In recent years, advances in our understanding of the pathogenesis of CTCL have led to the development of several new agents with promising efficacy profiles. The second article in this continuing medical education series describes the current immunotherapeutic options for treatment of CTCL, with a focus on how they interact with the immune system and their treatment outcomes in case studies and clinical trials. We will discuss established CTCL immunotherapies, such as interferons, photopheresis, and retinoids; emerging therapies, such as interleukin-12 and Toll-like receptor agonists; and new approaches to targeting tumor antigens and checkpoint molecules, such as mogamulizumab, anti-programmed cell death protein 1, anti-CD47, and chimeric antigen receptor T cell therapy. We also describe the principles of multimodality immunotherapy and the use of total skin electron beam therapy in such regimens.


Assuntos
Quimiorradioterapia/métodos , Elétrons/uso terapêutico , Imunoterapia/métodos , Linfoma Cutâneo de Células T/terapia , Neoplasias Cutâneas/terapia , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimiorradioterapia/tendências , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Fatores Imunológicos/uso terapêutico , Imunoterapia/tendências , Interferons/uso terapêutico , Linfoma Cutâneo de Células T/imunologia , Fotoferese/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Retinoides/uso terapêutico , Neoplasias Cutâneas/imunologia , Resultado do Tratamento
14.
Mol Ther ; 28(5): 1238-1250, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32208168

RESUMO

The management of men with prostate cancer (PCa) with biochemical recurrence following local definitive therapy remains controversial. Early use of androgen deprivation therapy (ADT) leads to significant side effects. Developing an alternative, clinically effective, and well-tolerated therapy remains an unmet clinical need. INO-5150 is a synthetic DNA therapy that includes plasmids encoding for prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA), and INO-9012 is a synthetic DNA plasmid encoding for interleukin-12 (IL-12). This phase 1/2, open-label, multi-center study enrolled men with PCa with rising PSA after surgery and/or radiation therapy. Patients were enrolled into one of four treatment arms: arm A, 2 mg of INO-5150; arm B, 8.5 mg of INO-5150; arm C, 2 mg of INO-5150 + 1 mg of INO-9012; and arm D, 8.5 mg of INO-5150 + 1 mg of INO-9012. Patients received study drug with electroporation on day 0 and on weeks 3, 12, and 24, and they were followed for up to 72 weeks. Sixty-two patients were enrolled. Treatment was well tolerated. 81% (50/62) of patients completed all visits. 85% (53/62) remained progression-free at 72 weeks. PSA doubling time (PSADT) was increased when assessed in patients with day 0 PSADT ≤12 months. Immunogenicity was observed in 76% (47/62) of patients by multiple assessments. Analysis indicated that CD38 and perforin co-positive CD8 T cell frequency correlated with attenuated PSA rise (p = 0.05, n = 50).


Assuntos
Terapia Genética/métodos , Imunidade , Imunoterapia/métodos , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/terapia , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Linfócitos T Citotóxicos/imunologia , Idoso , Idoso de 80 Anos ou mais , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Seguimentos , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/imunologia , Humanos , Interleucina-12/genética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/induzido quimicamente , Plasmídeos/genética , Plasmídeos/uso terapêutico , Intervalo Livre de Progressão , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/genética , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia
15.
J Hepatol ; 73(1): 72-83, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32088322

RESUMO

BACKGROUND & AIMS: Although direct-acting antiviral (DAA) treatment results in a sustained virologic response (SVR) in most patients with chronic HCV infection, they are at risk of re-infection. Moreover, the immune system is not completely normalized even after SVR (e.g. increased regulatory T [Treg] cell frequency). We developed a DNA vaccine, GLS-6150, to prevent re-infection of patients with DAA-induced SVR and evaluated its safety and immunogenicity in individuals with chronic HCV infection. METHODS: GLS-6150 consists of plasmids encoding HCV non-structural proteins (NS3-NS5A) and adjuvant IFNL3. The vaccine was administered 4 times at 4-weekly intervals to 3 groups (1, 3, or 6 mg/vaccination; n = 6 per group), followed by a 6 mg boost at 24 weeks (n = 14). Peripheral blood T cell responses were evaluated by interferon (IFN)-γ enzyme-linked immunospot assays, intracellular cytokine staining, and major histocompatibility complex class-I (MHC-I) dextramer staining. Treg cell frequency was assessed by flow cytometry. RESULTS: Severe adverse events or vaccine discontinuation were not reported. The IFN-γ spot-forming cells specific to NS3-NS5A were increased by GLS-6150. Both CD4+ and CD8+ T cells produced multiple cytokines. However, the frequency and phenotype of HCV-specific MHC-I dextramer+CD8+ T cells were not changed. Interestingly, the frequency of Treg cells, particularly activated Treg cells, was decreased by GLS-6150, as expected from previous reports that IFNL3 adjuvants decrease Treg cell frequency. Ex vivo IFN-λ3 treatment reduced Treg frequency in pre-vaccination peripheral blood mononuclear cells. Finally, Treg cell frequency inversely correlated with HCV-specific, IFN-γ-producing T cell responses in the study participants. CONCLUSIONS: We demonstrate that GLS-6150 decreases Treg cell frequency and enhances HCV-specific T cell responses without significant side effects. A phase I clinical trial of GLS-6150 is currently underway in patients with DAA-induced SVR. CLINICAL TRIAL NUMBER: NCT02027116. LAY SUMMARY: Although direct-acting antivirals (DAAs) are successfully used for the treatment of chronic hepatitis C virus (HCV) infection, a prophylactic HCV vaccine needs to be developed, especially for patients who achieve a sustained virologic response. In the current study, we show that a DNA vaccine (GLS-6150) was safe and increased HCV-specific T cell responses. A clinical trial is underway to test this vaccine in patients with a sustained virologic response following DAA therapy.


Assuntos
Hepacivirus , Hepatite C Crônica , Interferons/farmacologia , Linfócitos T Reguladores/imunologia , Vacinas de DNA , Ativação Viral , Adjuvantes Imunológicos/farmacologia , Antivirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Monitoramento de Medicamentos/métodos , Feminino , Hepacivirus/genética , Hepacivirus/imunologia , Hepacivirus/isolamento & purificação , Hepatite C Crônica/sangue , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Imunológica/métodos , Prevenção Secundária/métodos , Resposta Viral Sustentada , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Ativação Viral/efeitos dos fármacos , Ativação Viral/imunologia
16.
J Clin Microbiol ; 58(11)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32855181

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of COVID-19, resulting in cases of mild to severe respiratory distress and significant mortality. The global outbreak of this novel coronavirus has now infected >20 million people worldwide, with >5 million cases in the United States (11 August 2020). The development of diagnostic and research tools to determine infection and vaccine efficacy is critically needed. We have developed multiple serologic assays using newly designed SARS-CoV-2 reagents for detecting the presence of receptor-binding antibodies in sera. The first assay is surface plasmon resonance (SPR) based and can quantitate both antibody binding to the SARS-CoV-2 spike protein and blocking to the Angiotensin-converting enzyme 2 (ACE2) receptor in a single experiment. The second assay is enzyme-linked immunosorbent assay (ELISA) based and can measure competition and blocking of the ACE2 receptor to the SARS-CoV-2 spike protein with antispike antibodies. The assay is highly versatile, and we demonstrate the broad utility of the assay by measuring antibody functionality of sera from small animals and nonhuman primates immunized with an experimental SARS-CoV-2 vaccine. In addition, we employ the assay to measure receptor blocking of sera from SARS-CoV-2-infected patients. The assay is shown to correlate with pseudovirus neutralization titers. This type of rapid, surrogate neutralization diagnostic can be employed widely to help study SARS-CoV-2 infection and assess the efficacy of vaccines.


Assuntos
Anticorpos Bloqueadores/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/diagnóstico , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Cobaias , Humanos , Imunoglobulina G/sangue , Camundongos , Testes de Neutralização , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Primatas , Coelhos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Ressonância de Plasmônio de Superfície , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
17.
Mol Ther ; 27(1): 188-199, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30449662

RESUMO

Elevated low-density lipoprotein cholesterol (LDL-C) is one of the major contributors to cardiovascular heart disease (CHD), the leading cause of death worldwide. Due to severe side effects of statins, alternative treatment strategies are required for statin-intolerant patients. Monoclonal antibodies (mAbs) targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) have shown great efficacy in LDL-C reduction. Limitations for this approach include the need for multiple injections as well as increased costs associated with patient management. Here, we engineered a DNA-encoded mAb (DMAb) targeting PCSK9 (daPCSK9), as an alternative approach to protein-based lipid-lowering therapeutics, and we characterized its expression and activity. A single intramuscular administration of mouse daPCSK9 generated expression in vivo for over 42 days that corresponded with a substantial decrease of 28.6% in non-high-density lipoprotein cholesterol (non-HDL-C) and 10.3% in total cholesterol by day 7 in wild-type mice. Repeated administrations of the DMAb plasmid led to increasing expression, with DMAb levels of 7.5 µg/mL at day 62. daPCSK9 therapeutics may provide a novel, simple, less frequent, cost-effective approach to reducing LDL-C, either as a stand-alone therapy or in combination with other LDL-lowering therapeutics for synergistic effect.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Pró-Proteína Convertase 9/imunologia , Animais , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/terapia , LDL-Colesterol/sangue , Terapia Genética/métodos , Células HEK293 , Humanos , Camundongos , Plasmídeos/genética
18.
Mol Ther ; 27(2): 314-325, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30554854

RESUMO

Ovarian cancer presents in 80% of patients as a metastatic disease, which confers it with dismal prognosis despite surgery and chemotherapy. However, it is an immunogenic disease, and the presence of intratumoral T cells is a major prognostic factor for survival. We used a synthetic consensus (SynCon) approach to generate a novel DNA vaccine that breaks immune tolerance to follicle-stimulating hormone receptor (FSHR), present in 50% of ovarian cancers but confined to the ovary in healthy tissues. SynCon FSHR DNA vaccine generated robust CD8+ and CD4+ cellular immune responses and FSHR-redirected antibodies. The SynCon FSHR DNA vaccine delayed the progression of a highly aggressive ovarian cancer model with peritoneal carcinomatosis in immunocompetent mice, and it increased the infiltration of anti-tumor CD8+ T cells in the tumor microenvironment. Anti-tumor activity of this FSHR vaccine was confirmed in a syngeneic murine FSHR-expressing prostate cancer model. Furthermore, adoptive transfer of vaccine-primed CD8+ T cells after ex vivo expansion delayed ovarian cancer progression. In conclusion, the SynCon FSHR vaccine was able to break immune tolerance and elicit an effective anti-tumor response associated with an increase in tumor-infiltrating T cells. FSHR DNA vaccination could help current ovarian cancer therapy after first-line treatment of FSHR+ tumors to prevent tumor recurrence.


Assuntos
Vacinas Anticâncer/uso terapêutico , Neoplasias Ovarianas/prevenção & controle , Receptores do FSH/imunologia , Vacinas de DNA/uso terapêutico , Animais , Vacinas Anticâncer/imunologia , Feminino , Citometria de Fluxo , Células HEK293 , Humanos , Immunoblotting , Imunoterapia/métodos , Camundongos , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Vacinas de DNA/imunologia
19.
Mol Ther ; 27(5): 974-985, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962164

RESUMO

Zika virus (ZIKV) infection is endemic to several world regions, and many others are at high risk for seasonal outbreaks. Synthetic DNA-encoded monoclonal antibody (DMAb) is an approach that enables in vivo delivery of highly potent mAbs to control infections. We engineered DMAb-ZK190, encoding the mAb ZK190 neutralizing antibody, which targets the ZIKV E protein DIII domain. In vivo-delivered DMAb-ZK190 achieved expression levels persisting >10 weeks in mice and >3 weeks in non-human primate (NHPs), which is protective against ZIKV infectious challenge. This study is the first demonstration of infectious disease control in NHPs following in vivo delivery of a nucleic acid-encoded antibody, supporting the importance of this new platform.


Assuntos
Anticorpos Neutralizantes/farmacologia , DNA/farmacologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , DNA/imunologia , Humanos , Camundongos , Primatas , Proteínas do Envelope Viral/antagonistas & inibidores , Zika virus/genética , Zika virus/imunologia , Zika virus/patogenicidade , Infecção por Zika virus/imunologia , Infecção por Zika virus/terapia , Infecção por Zika virus/virologia
20.
J Foot Ankle Surg ; 59(2): 286-290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130992

RESUMO

The Ottawa ankle rules (OAR) indicate that any patient with the inability to ambulate up to four steps or with tenderness at either malleoli should receive diagnostic imaging for an acute ankle injury. Current trends indicate that health care providers tend to order more images in practice than necessary according to OAR. The purpose of this study is to analyze OAR in geriatric versus nongeriatric patients. Secondarily, we hope to refine these guidelines for ankle imaging in the hopes that health care providers will be comfortable in adhering to these guidelines more strictly. A retrospective chart review was conducted of 491 adult patients with an average (± standard deviation) age of 54.4 ± 21.6 years (range 18 to 96). Applying the current OAR resulted in a sensitivity of 98.2% and a specificity of 58.6% in this entire cohort. The calculated sensitivities were comparable between the nongeriatric and geriatric cohorts, at 98.60% and 97.99%, respectively. The specificities varied between the nongeriatric and geriatric cohorts, at 60.13% and 33.33%. We propose new guidelines that would mandate imaging studies for any patient ≥65 years of age presenting to the emergency department with ankle pain. When applying these proposed guidelines, the sensitivity of the entire study population was found to be improved to 99.0%, whereas the specificity dropped to 56.7%. The slight decrease in specificity was deemed acceptable because these guidelines are meant to be used as a screening tool and because the risk of OAR not correctly identifying ankle fracture (2% of geriatric fractures) was completely mitigated in the geriatric population.


Assuntos
Envelhecimento , Fraturas do Tornozelo/diagnóstico , Traumatismos do Tornozelo/diagnóstico , Articulação do Tornozelo/diagnóstico por imagem , Serviço Hospitalar de Emergência/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA