Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 616(7958): 747-754, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046084

RESUMO

Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.


Assuntos
Hematopoiese Clonal , Suscetibilidade a Doenças , Hepatite , Cirrose Hepática , Animais , Camundongos , Hematopoiese Clonal/genética , Hepatite/genética , Inflamação/genética , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , Razão de Chances , Progressão da Doença
2.
Nature ; 616(7958): 755-763, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046083

RESUMO

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Assuntos
Hematopoiese Clonal , Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Alelos , Hematopoiese Clonal/genética , Estudo de Associação Genômica Ampla , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Regiões Promotoras Genéticas
3.
Nature ; 586(7831): 763-768, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057201

RESUMO

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Assuntos
Hematopoiese Clonal/genética , Predisposição Genética para Doença , Genoma Humano/genética , Sequenciamento Completo do Genoma , Adulto , África/etnologia , Idoso , Idoso de 80 Anos ou mais , População Negra/genética , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Mutação em Linhagem Germinativa/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Medicina de Precisão , Proteínas Proto-Oncogênicas/genética , Proteínas com Motivo Tripartido/genética , Estados Unidos , alfa Carioferinas/genética
4.
Blood ; 141(18): 2214-2223, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36652671

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is a common form of age-related somatic mosaicism that is associated with significant morbidity and mortality. CHIP mutations can be identified in peripheral blood samples that are sequenced using approaches that cover the whole genome, the whole exome, or targeted genetic regions; however, differentiating true CHIP mutations from sequencing artifacts and germ line variants is a considerable bioinformatic challenge. We present a stepwise method that combines filtering based on sequencing metrics, variant annotation, and population-based associations to increase the accuracy of CHIP calls. We apply this approach to ascertain CHIP in ∼550 000 individuals in the UK Biobank complete whole exome cohort and the All of Us Research Program initial whole genome release cohort. CHIP ascertainment on this scale unmasks recurrent artifactual variants and highlights the importance of specialized filtering approaches for several genes, including TET2 and ASXL1. We show how small changes in filtering parameters can considerably increase CHIP misclassification and reduce the effect size of epidemiological associations. Our high-fidelity call set refines previous population-based associations of CHIP with incident outcomes. For example, the annualized incidence of myeloid malignancy in individuals with small CHIP clones is 0.03% per year, which increases to 0.5% per year among individuals with very large CHIP clones. We also find a significantly lower prevalence of CHIP in individuals of self-reported Latino or Hispanic ethnicity in All of Us, highlighting the importance of including diverse populations. The standardization of CHIP calling will increase the fidelity of CHIP epidemiological work and is required for clinical CHIP diagnostic assays.


Assuntos
Hematopoiese Clonal , Saúde da População , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Mutação , Genética Humana
6.
PLoS Genet ; 16(11): e1009077, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175840

RESUMO

Phenotypes extracted from Electronic Health Records (EHRs) are increasingly prevalent in genetic studies. EHRs contain hundreds of distinct clinical laboratory test results, providing a trove of health data beyond diagnoses. Such lab data is complex and lacks a ubiquitous coding scheme, making it more challenging than diagnosis data. Here we describe the first large-scale cross-health system genome-wide association study (GWAS) of EHR-based quantitative laboratory-derived phenotypes. We meta-analyzed 70 lab traits matched between the BioVU cohort from the Vanderbilt University Health System and the Michigan Genomics Initiative (MGI) cohort from Michigan Medicine. We show high replication of known association for these traits, validating EHR-based measurements as high-quality phenotypes for genetic analysis. Notably, our analysis provides the first replication for 699 previous GWAS associations across 46 different traits. We discovered 31 novel associations at genome-wide significance for 22 distinct traits, including the first reported associations for two lab-based traits. We replicated 22 of these novel associations in an independent tranche of BioVU samples. The summary statistics for all association tests are freely available to benefit other researchers. Finally, we performed mirrored analyses in BioVU and MGI to assess competing analytic practices for EHR lab traits. We find that using the mean of all available lab measurements provides a robust summary value, but alternate summarizations can improve power in certain circumstances. This study provides a proof-of-principle for cross health system GWAS and is a framework for future studies of quantitative EHR lab traits.


Assuntos
Registros Eletrônicos de Saúde/estatística & dados numéricos , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla/métodos , Bancos de Espécimes Biológicos , Estudos de Coortes , Registros Eletrônicos de Saúde/tendências , Genômica , Humanos , Michigan , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável
8.
Genet Epidemiol ; 43(8): 980-995, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31452258

RESUMO

Array genotyping is a cost-effective and widely used tool that enables assessment of up to millions of genetic markers in hundreds of thousands of individuals. Genotyping array data are typically highly accurate but sensitive to mixing of DNA samples from multiple individuals before or during genotyping. Contaminated samples can lead to genotyping errors and consequently cause false positive signals or reduce power of association analyses. Here, we propose a new method to identify contaminated samples and the sources of contamination within a genotyping batch. Through analysis of array intensity and genotype data from intentionally mixed samples and 22,366 samples of the Michigan Genomics Initiative, an ongoing biobank-based study, we show that our method can reliably estimate contamination. We also show that identifying sources of contamination can implicate problematic sample processing steps and guide process improvements. Compared to existing methods, our approach can estimate the proportion of contaminating DNA more accurately, eliminate the need for external databases of allele frequencies, and provide contamination estimates that are more robust to the ancestral origin of the contaminating sample.


Assuntos
Contaminação por DNA , Técnicas de Genotipagem , DNA , Frequência do Gene , Marcadores Genéticos , Genômica/métodos , Genótipo , Técnicas de Genotipagem/métodos , Humanos , Polimorfismo de Nucleotídeo Único
9.
Genet Epidemiol ; 43(7): 800-814, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31433078

RESUMO

The power of genetic association analyses can be increased by jointly meta-analyzing multiple correlated phenotypes. Here, we develop a meta-analysis framework, Meta-MultiSKAT, that uses summary statistics to test for association between multiple continuous phenotypes and variants in a region of interest. Our approach models the heterogeneity of effects between studies through a kernel matrix and performs a variance component test for association. Using a genotype kernel, our approach can test for rare-variants and the combined effects of both common and rare-variants. To achieve robust power, within Meta-MultiSKAT, we developed fast and accurate omnibus tests combining different models of genetic effects, functional genomic annotations, multiple correlated phenotypes, and heterogeneity across studies. In addition, Meta-MultiSKAT accommodates situations where studies do not share exactly the same set of phenotypes or have differing correlation patterns among the phenotypes. Simulation studies confirm that Meta-MultiSKAT can maintain the type-I error rate at the exome-wide level of 2.5 × 10-6 . Further simulations under different models of association show that Meta-MultiSKAT can improve the power of detection from 23% to 38% on average over single phenotype-based meta-analysis approaches. We demonstrate the utility and improved power of Meta-MultiSKAT in the meta-analyses of four white blood cell subtype traits from the Michigan Genomics Initiative (MGI) and SardiNIA studies.


Assuntos
Estudos de Associação Genética , Metanálise como Assunto , Frequência do Gene/genética , Genótipo , Humanos , Itália , Leucócitos/metabolismo , Modelos Genéticos , Mutação/genética , Fenótipo
10.
Nat Commun ; 15(1): 3800, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714703

RESUMO

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Assuntos
Aberrações Cromossômicas , Hematopoiese Clonal , Mosaicismo , Humanos , Hematopoiese Clonal/genética , Masculino , Feminino , Estudo de Associação Genômica Ampla , Janus Quinase 2/genética , Telomerase/genética , Telomerase/metabolismo , Perda de Heterozigosidade , Estudos Transversais , Mutação , Pessoa de Meia-Idade , Células-Tronco Hematopoéticas/metabolismo , Polimorfismo de Nucleotídeo Único , Idoso
11.
Nat Commun ; 15(1): 4417, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789417

RESUMO

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Assuntos
Estudo de Associação Genômica Ampla , Homeostase do Telômero , Telômero , Humanos , Telômero/genética , Telômero/metabolismo , Células K562 , Homeostase do Telômero/genética , Polimorfismo de Nucleotídeo Único , Regulação da Expressão Gênica , Sistemas CRISPR-Cas
12.
Nat Aging ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834882

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.

13.
bioRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577640

RESUMO

Due to the abundance of single cell RNA-seq data, a number of methods for predicting expression after perturbation have recently been published. Expression prediction methods are enticing because they promise to answer pressing questions in fields ranging from developmental genetics to cell fate engineering and because they are faster, cheaper, and higher-throughput than their experimental counterparts. However, the absolute and relative accuracy of these methods is poorly characterized, limiting their informed use, their improvement, and the interpretation of their predictions. To address these issues, we created a benchmarking platform that combines a panel of large-scale perturbation datasets with an expression forecasting software engine that encompasses or interfaces to current methods. We used our platform to systematically assess methods, parameters, and sources of auxiliary data. We found that uninformed baseline predictions, which were not always included in prior evaluations, yielded the same or better mean absolute error than benchmarked methods in all test cases. These results cast doubt on the ability of current expression forecasting methods to provide mechanistic insights or to rank hypotheses for experimental follow-up. However, given the rapid pace of innovation in the field, new approaches may yield more accurate expression predictions. Our platform will serve as a neutral benchmark to improve methods and to identify contexts in which expression prediction can succeed.

14.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37745614

RESUMO

The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation, including eQTL mapping, has been challenging due to small effects. Experimental perturbation approaches offer a complementary and powerful approach to mapping trans-regulators. We used CRISPR knockouts of 84 genes in primary CD4+ T cells to perturb an immune cell gene network, targeting both inborn error of immunity (IEI) disease transcription factors (TFs) and background TFs matched in constraint and expression level, but without a known immune disease association. We developed a novel Bayesian structure learning method called Linear Latent Causal Bayes (LLCB) to estimate the gene regulatory network from perturbation data and observed 211 directed edges among the genes which could not be detected in existing CD4+ trans-eQTL data. We used LLCB to characterize the differences between the IEI and background TFs, finding that the gene groups were highly interconnected, but that IEI TFs were much more likely to regulate immune cell specific pathways and immune GWAS genes. We further characterized nine coherent gene programs based on downstream effects of the TFs and linked these modules to regulation of GWAS genes, finding that canonical JAK-STAT family members are regulated by KMT2A, a global epigenetic regulator. These analyses reveal the trans-regulatory cascade from upstream epigenetic regulator to intermediate TFs to downstream effector cytokines and elucidate the logic linking immune GWAS genes to key signaling pathways.

15.
Nat Med ; 29(7): 1662-1670, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37322115

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer's disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 10-5), and Mendelian randomization analyses supported a potential causal association. We observed that the same mutations found in blood were also detected in microglia-enriched fraction of the brain in seven of eight CHIP carriers. Single-nucleus chromatin accessibility profiling of brain-derived nuclei in six CHIP carriers revealed that the mutated cells comprised a large proportion of the microglial pool in the samples examined. While additional studies are required to validate the mechanistic findings, these results suggest that CHIP may have a role in attenuating the risk of AD.


Assuntos
Doença de Alzheimer , Lesões Pré-Cancerosas , Humanos , Hematopoiese Clonal , Doença de Alzheimer/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Mutação/genética
16.
Sci Adv ; 9(17): eabm4945, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126548

RESUMO

Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences.


Assuntos
Mutação em Linhagem Germinativa , Hematopoese , Humanos , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto , Fenótipo
17.
medRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905118

RESUMO

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well-understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our estimates of mCA fitness were correlated (R 2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using a theoretical probability distribution. Individuals with lymphoid-associated mCAs had a significantly higher white blood cell count and faster clonal expansion rate. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified TCL1A , NRIP1 , and TERT locus variants as modulators of mCA clonal expansion rate.

18.
Cureus ; 14(1): e21627, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35228975

RESUMO

Introduction The purpose of our study is to determine in-hospital outcomes of acute myocardial infarction in patients with hematological malignancies and their subtypes. Method Patient data were obtained from the nationwide inpatient sample (NIS) database between the years 2009-2014. Patients with hematological cancer subtypes and acute MI (non-ST segment elevation myocardial infarction and ST-segment elevation myocardial infarction (NSTEMI/STEMI) were identified using validated international classification of diseases (ninth revision) and clinical modification (ICD-9-CM) codes. Statistical analysis using the chi-square test was performed to determine the hospital outcomes of acute MI in patients with hematological cancers and subtypes. Results The prevalence of acute myocardial infarction was 2.4% in patients with hematological neoplasms (N=3,027,800). Amongst the subtypes of blood cancers, the highest prevalence of acute MI was seen in lymphocytic leukemia (2.9%). The mortality of MI in patients with hematological malignancies was 16.8% vs 8.8% in patients with non-hematological malignancies, in-hospital costs were $25469 ± 36763 vs. $20534 ± 24767, and length of in-hospital stay was 8.3 ± 10 vs 6.3 ± 7.8 days. Amongst the hematological cancer subtypes, the highest mortality of acute MI was found in myeloid leukemia (23%) followed by multiple myeloma (MM) (17.9%), lymphocytic leukemia (15.9%), and lymphoma (14.4%). The length of stay and hospitalization cost was highest for myeloid leukemia, followed by MM, lymphocytic leukemia, and lymphoma. Conclusion This study showed that acute MI in patients with hematological malignancies has higher in-hospital mortality, length of stay, and cost. Amongst the blood neoplasm subtypes the highest mortality, length of hospital stay, and hospitalization cost were found in myeloid leukemia.

19.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990411

RESUMO

BACKGROUNDCurative gene therapies for sickle cell disease (SCD) are currently undergoing clinical evaluation. The occurrence of myeloid malignancies in these trials has prompted safety concerns. Individuals with SCD are predisposed to myeloid malignancies, but the underlying causes remain undefined. Clonal hematopoiesis (CH) is a premalignant condition that also confers significant predisposition to myeloid cancers. While it has been speculated that CH may play a role in SCD-associated cancer predisposition, limited data addressing this issue have been reported.METHODSHere, we leveraged 74,190 whole-genome sequences to robustly study CH in SCD. Somatic mutation calling methods were used to assess CH in all samples and comparisons between individuals with and without SCD were performed.RESULTSWhile we had sufficient power to detect a greater than 2-fold increased rate of CH, we found no detectable variation in rate or clone properties between individuals affected by SCD and controls. The rate of CH in individuals with SCD was unaltered by hydroxyurea use.CONCLUSIONSWe did not observe an increased risk for acquiring detectable CH in SCD, at least as measured by whole-genome sequencing. These results should help guide ongoing efforts and further studies that seek to better define the risk factors underlying myeloid malignancy predisposition in SCD and help ensure that curative therapies can be more safely applied.FUNDINGNew York Stem Cell Foundation and the NIH.


Assuntos
Anemia Falciforme/genética , Hematopoiese Clonal/genética , Anemia Falciforme/terapia , Feminino , Humanos , Masculino , Sequenciamento Completo do Genoma
20.
Nat Commun ; 13(1): 5350, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097025

RESUMO

Age-related changes to the genome-wide DNA methylation (DNAm) pattern observed in blood are well-documented. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by the age-related acquisition and expansion of leukemogenic mutations in hematopoietic stem cells (HSCs), is associated with blood cancer and coronary artery disease (CAD). Epigenetic regulators DNMT3A and TET2 are the two most frequently mutated CHIP genes. Here, we present results from an epigenome-wide association study for CHIP in 582 Cardiovascular Health Study (CHS) participants, with replication in 2655 Atherosclerosis Risk in Communities (ARIC) Study participants. We show that DNMT3A and TET2 CHIP have distinct and directionally opposing genome-wide DNAm association patterns consistent with their regulatory roles, albeit both promoting self-renewal of HSCs. Mendelian randomization analyses indicate that a subset of DNAm alterations associated with these two leading CHIP genes may promote the risk for CAD.


Assuntos
Hematopoiese Clonal , Doença da Artéria Coronariana , Hematopoiese Clonal/genética , Doença da Artéria Coronariana/genética , Metilação de DNA/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA