Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Cell Sci ; 136(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126809

RESUMO

Regulation of glucose transport, which is central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter (also known as SLC2A4) in the plasma membrane (PM) of fat and muscle cells. Physiologic signals [such as activated insulin receptor or AMP-activated protein kinase (AMPK)] increase PM GLUT4. Here, we show that the distribution of GLUT4 between the PM and interior of human muscle cells is dynamically maintained, and that AMPK promotes PM redistribution of GLUT4 by regulating exocytosis and endocytosis. Stimulation of exocytosis by AMPK is mediated by Rab10 and the Rab GTPase-activating protein TBC1D4. APEX2 proximity mapping reveals that GLUT4 traverses both PM-proximal and PM-distal compartments in unstimulated muscle cells, further supporting retention of GLUT4 by a constitutive retrieval mechanism. AMPK-stimulated translocation involves GLUT4 redistribution among the same compartments traversed in unstimulated cells, with a significant recruitment of GLUT4 from the Golgi and trans-Golgi network compartments. Our comprehensive proximal protein mapping provides an integrated, high-density, whole-cell accounting of the localization of GLUT4 at a resolution of ∼20 nm that serves as a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in a physiologically relevant cell type.


Assuntos
Transportador de Glucose Tipo 4 , Células Musculares , Proteoma , Humanos , Proteínas Quinases Ativadas por AMP , Membrana Celular , Músculos , Transportador de Glucose Tipo 4/metabolismo
2.
J Biol Chem ; 296: 100193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334888

RESUMO

Calcific aortic valve disease (CAVD) occurs when subpopulations of valve cells undergo specific differentiation pathways, promoting tissue fibrosis and calcification. Lipoprotein particles carry oxidized lipids that promote valvular disease, but low-density lipoprotein-lowering therapies have failed in clinical trials, and there are currently no pharmacological interventions available for this disease. Apolipoproteins are known promoters of atherosclerosis, but whether they possess pathogenic properties in CAVD is less clear. To search for a possible link, we assessed 12 apolipoproteins in nonfibrotic/noncalcific and fibrotic/calcific aortic valve tissues by proteomics and immunohistochemistry to understand if they were enriched in calcified areas. Eight apolipoproteins (apoA-I, apoA-II, apoA-IV, apoB, apoC-III, apoD, apoL-I, and apoM) were enriched in the calcific versus nonfibrotic/noncalcific tissues. Apo(a), apoB, apoC-III, apoE, and apoJ localized within the disease-prone fibrosa and colocalized with calcific regions as detected by immunohistochemistry. Circulating apoC-III on lipoprotein(a) is a potential biomarker of aortic stenosis incidence and progression, but whether apoC-III also induces aortic valve calcification is unknown. We found that apoC-III was increased in fibrotic and calcific tissues and observed within the calcification-prone fibrosa layer as well as around calcification. In addition, we showed that apoC-III induced calcification in primary human valvular cell cultures via a mitochondrial dysfunction/inflammation-mediated pathway. This study provides a first assessment of a broad array of apolipoproteins in CAVD tissues, demonstrates that specific apolipoproteins associate with valvular calcification, and implicates apoC-III as an active and modifiable driver of CAVD beyond its potential role as a biomarker.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Apolipoproteína C-III/metabolismo , Calcinose/metabolismo , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apolipoproteína C-III/análise , Calcinose/patologia , Células Cultivadas , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia
3.
Mol Cell ; 49(6): 1167-75, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23453806

RESUMO

Thioredoxin-interacting protein (TXNIP) is an α-arrestin family protein that is induced in response to glucose elevation. It has been shown to provide a negative feedback loop to regulate glucose uptake into cells, though the biochemical mechanism of action has been obscure. Here, we report that TXNIP suppresses glucose uptake directly, by binding to the glucose transporter GLUT1 and inducing GLUT1 internalization through clathrin-coated pits, as well as indirectly, by reducing the level of GLUT1 messenger RNA (mRNA). In addition, we show that energy stress results in the phosphorylation of TXNIP by AMP-dependent protein kinase (AMPK), leading to its rapid degradation. This suppression of TXNIP results in an acute increase in GLUT1 function and an increase in GLUT1 mRNA (hence the total protein levels) for long-term adaptation. The glucose influx through GLUT1 restores ATP-to-ADP ratios in the short run and ultimately induces TXNIP protein production to suppress glucose uptake once energy homeostasis is reestablished.


Assuntos
Adenilato Quinase/fisiologia , Proteínas de Transporte/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Proteólise , Sequência de Aminoácidos , Animais , Vesículas Revestidas por Clatrina/metabolismo , Sequência Conservada , Endocitose , Células Hep G2 , Humanos , Camundongos , Dados de Sequência Molecular , Transporte Proteico , Imagem com Lapso de Tempo
4.
J Cell Sci ; 128(16): 3143-54, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116575

RESUMO

The key proteins mediating store-operated Ca(2+) entry (SOCE) are the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the plasma membrane Ca(2+)-selective channel Orai1. Here, we quantitatively dissect Orai1 trafficking dynamics and show that Orai1 recycles rapidly at the plasma membrane (Kex≃0.1 min(-1)), with ∼40% of the total Orai1 pool localizing to the plasma membrane at steady state. A subset of intracellular Orai1 localizes to a sub-plasmalemal compartment. Store depletion is coupled to Orai1 plasma membrane enrichment in a STIM1-dependent fashion. This is due to trapping of Orai1 into cortical ER STIM1 clusters, leading to its removal from the recycling pool and enrichment at the plasma membrane. Interestingly, upon high STIM1 expression, Orai1 is trapped into STIM1 clusters intracellularly, thus preventing its plasma membrane enrichment following store depletion. Consistent with this, STIM1 knockdown prevents trapping of excess Orai1 into limiting STIM1 clusters in the cortical ER. SOCE-dependent Ca(2+) influx shows a similar biphasic dependence on the Orai1:STIM1 ratio. Therefore, a STIM1-dependent Orai1 'trafficking trap' mechanism controls Orai1 plasma membrane enrichment and SOCE levels, thus modulating the SOCE 'bandwidth' for downstream signaling.


Assuntos
Canais de Cálcio/genética , Sinalização do Cálcio/genética , Cálcio/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Animais , Células CHO , Canais de Cálcio/biossíntese , Membrana Celular/metabolismo , Cricetulus , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/biossíntese , Proteína ORAI1 , Transporte Proteico/genética , RNA Interferente Pequeno , Transdução de Sinais , Molécula 1 de Interação Estromal
5.
Genet Med ; 17(7): 578-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25356970

RESUMO

PURPOSE: Diagnostic exome sequencing was immediately successful in diagnosing patients in whom traditional technologies were uninformative. Herein, we provide the results from the first 500 probands referred to a clinical laboratory for diagnostic exome sequencing. METHODS: Family-based exome sequencing included whole-exome sequencing followed by family inheritance-based model filtering, comprehensive medical review, familial cosegregation analysis, and analysis of novel genes. RESULTS: A positive or likely positive result in a characterized gene was identified in 30% of patients (152/500). A novel gene finding was identified in 7.5% of patients (31/416). The highest diagnostic rates were observed among patients with ataxia, multiple congenital anomalies, and epilepsy (44, 36, and 35%, respectively). Twenty-three percent of positive findings were within genes characterized within the past 2 years. The diagnostic rate was significantly higher among families undergoing a trio (37%) as compared with a singleton (21%) whole-exome testing strategy. CONCLUSION: Overall, we present results from the largest clinical cohort of diagnostic exome sequencing cases to date. These data demonstrate the utility of family-based exome sequencing and analysis to obtain the highest reported detection rate in an unselected clinical cohort, illustrating the utility of diagnostic exome sequencing as a transformative technology for the molecular diagnosis of genetic disease.


Assuntos
Exoma , Técnicas de Diagnóstico Molecular/estatística & dados numéricos , Análise de Sequência de DNA/estatística & dados numéricos , Adulto , Estudos de Coortes , Bases de Dados Genéticas , Feminino , Hereditariedade , Humanos , Masculino , Técnicas de Diagnóstico Molecular/métodos , Análise de Sequência de DNA/métodos
6.
Innovation (Camb) ; 5(4): 100624, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746910

RESUMO

The broader application of lithium-ion batteries (LIBs) is constrained by safety concerns arising from thermal runaway (TR). Accurate prediction of TR is essential to comprehend its underlying mechanisms, expedite battery design, and enhance safety protocols, thereby significantly promoting the safer use of LIBs. The complex, nonlinear nature of LIB systems presents substantial challenges in TR modeling, stemming from the need to address multiscale simulations, multiphysics coupling, and computing efficiency issues. This paper provides an extensive review and outlook on TR modeling technologies, focusing on recent advances, current challenges, and potential future directions. We begin with an overview of the evolutionary processes and underlying mechanisms of TR from multiscale perspectives, laying the foundation for TR modeling. Following a comprehensive understanding of TR phenomena and mechanisms, we introduce a multiphysics coupling model framework to encapsulate these aspects. Within this framework, we detail four fundamental physics modeling approaches: thermal, electrical, mechanical, and fluid dynamic models, highlighting the primary challenges in developing and integrating these models. To address the intrinsic trade-off between computational accuracy and efficiency, we discuss several promising modeling strategies to accelerate TR simulations and explore the role of AI in advancing next-generation TR models. Last, we discuss challenges related to data availability, model scalability, and safety standards and regulations.

7.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333333

RESUMO

Regulation of glucose transport into muscle and adipocytes, central for control of whole-body metabolism, is determined by the amount of GLUT4 glucose transporter in the plasma membrane ( PM ). Physiologic signals (activated insulin receptor or AMP kinase [ AMPK ]), acutely increase PM GLUT4 to enhance glucose uptake. Here we show in kinetic studies that intracellular GLUT4 is in equilibrium with the PM in unstimulated cultured human skeletal muscle cells, and that AMPK promotes GLUT4 redistribution to the PM by regulating both exocytosis and endocytosis. AMPK-stimulation of exocytosis requires Rab10 and Rab GTPase activating protein TBC1D4, requirements shared with insulin control of GLUT4 in adipocytes. Using APEX2 proximity mapping, we identify, at high-density and high-resolution, the GLUT4 proximal proteome, revealing GLUT4 traverses both PM proximal and distal compartments in unstimulated muscle cells. These data support intracellular retention of GLUT4 in unstimulated muscle cells by a dynamic mechanism dependent on the rates of internalization and recycling. AMPK promoted GLUT4 translocation to the PM involves redistribution of GLUT4 among the same compartments traversed in unstimulated cells, with a significant redistribution of GLUT4 from the PM distal Trans Golgi Network Golgi compartments. The comprehensive proximal protein mapping provides an integrated, whole cell accounting of GLUT4's localization at a resolution of ∼20 nm, a structural framework for understanding the molecular mechanisms regulating GLUT4 trafficking downstream of different signaling inputs in physiologically relevant cell type and as such, sheds new light on novel key pathways and molecular components as potential therapeutic approaches to modulate muscle glucose uptake.

8.
Mol Metab ; 78: 101831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925022

RESUMO

OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350). METHODS: We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a ß-cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic. RESULTS: We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in ß-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN). CONCLUSIONS: Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of GIPR-Q350/4 and GIPR-E350/4 in mice and humans. These findings contribute to a more complete understanding of the impact of GIPR-Q354 variant on glucose homeostasis that could perhaps be leveraged to enhance pharmacologic targeting of GIPR for the treatment of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Masculino , Animais , Feminino , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Glucose/metabolismo , Homeostase
9.
Front Cardiovasc Med ; 9: 889994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990960

RESUMO

Background: Abdominal aortic aneurysm (AAA), characterized by a continued expansion of the aorta, leads to rupture if not surgically repaired. Mice aid the study of disease progression and its underlying mechanisms since sequential studies of aneurysm development are not feasible in humans. The present study used unbiased proteomics and systems biology to understand the molecular relationship between the mouse models of AAA and the human disease. Methods and results: Aortic tissues of developing and established aneurysms produced by either angiotensin II (AngII) infusion in Apoe -/- and Ldlr -/- mice or intraluminal elastase incubation in wildtype C57BL/6J mice were examined. Aortas were dissected free and separated into eight anatomical segments for proteomics in comparison to their appropriate controls. High-dimensional proteome cluster analyses identified site-specific protein signatures in the suprarenal segment for AngII-infused mice (159 for Apoe -/- and 158 for Ldlr -/-) and the infrarenal segment for elastase-incubated mice (173). Network analysis revealed a predominance of inflammatory and coagulation factors in developing aneurysms, and a predominance of fibrosis-related pathways in established aneurysms for both models. To further substantiate our discovery platform, proteomics was performed on human infrarenal aortic aneurysm tissues as well as aortic tissue collected from age-matched controls. Protein processing and inflammatory pathways, particularly neutrophil-associated inflammation, dominated the proteome of the human aneurysm abdominal tissue. Aneurysmal tissue from both mouse and human had inflammation, coagulation, and protein processing signatures, but differed in the prevalence of neutrophil-associated pathways, and erythrocyte and oxidative stress-dominated networks in the human aneurysms. Conclusions: Identifying changes unique to each mouse model will help to contextualize model-specific findings. Focusing on shared proteins between mouse experimental models or between mouse and human tissues may help to better understand the mechanisms for AAA and establish molecular bases for novel therapies.

10.
Mol Biol Cell ; 32(1): 57-73, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175605

RESUMO

Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.


Assuntos
Núcleo Celular/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas rab de Ligação ao GTP/metabolismo , Células 3T3-L1 , Animais , Núcleo Celular/efeitos dos fármacos , Cobre/farmacologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Modelos Biológicos , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
11.
Flow Turbul Combust ; 101(4): 1009-1021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613185

RESUMO

Gas explosions in homogeneous reactive mixtures have been widely studied both experimentally and numerically. However, in practice and industrial applications, combustible mixtures are usually inhomogeneous and subject to vertical concentration gradients. Limited studies have been conducted in such context which resulted in limited understanding of the explosion characteristics in such situations. The present numerical investigation aims to study the dynamics of Deflagration to Detonation Transition (DDT) in inhomogeneous hydrogen/air mixtures and examine the effects of obstacle blockage ratio in DDT. VCEFoam, a reactive density-based solver recently assembled by the authors within the frame of OpenFOAM CFD toolbox has been used. VCEFoam uses the Harten-Lax-van Leer-Contact (HLLC) scheme fr the convective fluxes contribution and shock capturing. The solver has been verified by comparing its predictions with the analytical solutions of two classical test cases. For validation, the experimental data of Boeck et al. (1) is used. The experiments were conducted in a rectangular channel the three different blockage ratios and hydrogen concentrations. Comparison is presented between the predicted and measured flame tip velocities. The shaded contours of the predicted temperature and numerical Schlieren (magnitude of density gradient) will be analysed to examine the effects of the blockage ratio on flame acceleration and DDT.

12.
Sci Rep ; 8(1): 9006, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899496

RESUMO

The sorting receptor Sortilin functions in the regulation of glucose and lipid metabolism. Dysfunctional lipid uptake, storage, and metabolism contribute to several major human diseases including atherosclerosis and obesity. Sortilin associates with cardiovascular disease; however, the role of Sortilin in adipose tissue and lipid metabolism remains unclear. Here we show that in the low-density lipoprotein receptor-deficient (Ldlr-/-) atherosclerosis model, Sortilin deficiency (Sort1-/-) in female mice suppresses Niemann-Pick type C1-Like 1 (Npc1l1) mRNA levels, reduces body and white adipose tissue weight, and improves brown adipose tissue function partially via transcriptional downregulation of Krüppel-like factor 4 and Liver X receptor. Female Ldlr-/-Sort1-/- mice on a high-fat/cholesterol diet had elevated plasma Fibroblast growth factor 21 and Adiponectin, an adipokine that when reduced is associated with obesity and cardiovascular disease-related factors. Additionally, Sort1 deficiency suppressed cholesterol absorption in both female mice ex vivo intestinal tissue and human colon Caco-2 cells in a similar manner to treatment with the NPC1L1 inhibitor ezetimibe. Together our findings support a novel role of Sortilin in energy regulation and lipid homeostasis in female mice, which may be a potential therapeutic target for obesity and cardiovascular disease.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Tecido Adiposo/metabolismo , Colesterol/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Proteínas Adaptadoras de Transporte Vesicular/genética , Adiponectina/sangue , Animais , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/metabolismo , Células CACO-2 , Colesterol/farmacocinética , Dieta Hiperlipídica , Feminino , Células HEK293 , Células Hep G2 , Humanos , Absorção Intestinal , Fator 4 Semelhante a Kruppel , Masculino , Camundongos Knockout , Obesidade/sangue , Obesidade/genética , Obesidade/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética
13.
J Clin Invest ; 128(9): 3941-3956, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30102258

RESUMO

The t-SNARE protein SNAP23 conventionally functions as a component of the cellular machinery required for intracellular transport vesicle fusion with target membranes and has been implicated in the regulation of fasting glucose levels, BMI, and type 2 diabetes. Surprisingly, we observed that adipocyte-specific KO of SNAP23 in mice resulted in a temporal development of severe generalized lipodystrophy associated with adipose tissue inflammation, insulin resistance, hyperglycemia, liver steatosis, and early death. This resulted from adipocyte cell death associated with an inhibition of macroautophagy and lysosomal degradation of the proapoptotic regulator BAX, with increased BAX activation. BAX colocalized with LC3-positive autophagic vacuoles and was increased upon treatment with lysosome inhibitors. Moreover, BAX deficiency suppressed the lipodystrophic phenotype in the adipocyte-specific SNAP23-KO mice and prevented cell death. In addition, ATG9 deficiency phenocopied SNAP23 deficiency, whereas ATG7 deficiency had no effect on BAX protein levels, BAX activation, or apoptotic cell death. These data demonstrate a role for SNAP23 in the control of macroautophagy and programmed cell death through an ATG9-dependent, but ATG7-independent, pathway regulating BAX protein levels and BAX activation.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína X Associada a bcl-2/metabolismo , Células 3T3-L1 , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/deficiência , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteólise , Proteínas Qb-SNARE/deficiência , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/deficiência , Proteínas Qc-SNARE/genética , Proteínas de Transporte Vesicular/deficiência , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética
14.
Nanomaterials (Basel) ; 8(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751516

RESUMO

In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.

15.
Cell Rep ; 19(10): 2005-2013, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591573

RESUMO

Growth factors, such as insulin, can induce both acute and long-term glucose uptake into cells. Apart from the rapid, insulin-induced fusion of glucose transporter (GLUT)4 storage vesicles with the cell surface that occurs in muscle and adipose tissues, the mechanism behind acute induction has been unclear in other systems. Thioredoxin interacting protein (TXNIP) has been shown to be a negative regulator of cellular glucose uptake. TXNIP is transcriptionally induced by glucose and reduces glucose influx by promoting GLUT1 endocytosis. Here, we report that TXNIP is a direct substrate of protein kinase B (AKT) and is responsible for mediating AKT-dependent acute glucose influx after growth factor stimulation. Furthermore, TXNIP functions as an adaptor for the basal endocytosis of GLUT4 in vivo, its absence allows excess glucose uptake in muscle and adipose tissues, causing hypoglycemia during fasting. Altogether, TXNIP serves as a key node of signal regulation and response for modulating glucose influx through GLUT1 and GLUT4.


Assuntos
Tecido Adiposo/metabolismo , Proteínas de Transporte/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Tiorredoxinas/metabolismo , Células 3T3-L1 , Animais , Proteínas de Transporte/genética , Endocitose , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/genética , Tiorredoxinas/genética
16.
Cell Rep ; 21(4): 1021-1035, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069585

RESUMO

Lower adipose-ChREBP and de novo lipogenesis (DNL) are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO) mice with negligible sucrose-induced DNL in adipose tissue (AT). Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs) in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Resistência à Insulina , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Cultivadas , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Proteínas Nucleares/genética , Ácidos Palmíticos/sangue , Ácidos Esteáricos/sangue , Fatores de Transcrição/genética
17.
J Hazard Mater ; 290: 78-86, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746567

RESUMO

In order to characterize fire merging, pool fires on hollow trays with varying side lengths were burned under quasi-quiescent condition and in a wind tunnel with the wind speed ranging from 0m/s to 7.5m/s. Burning rate and flame images were recorded in the whole combustion process. The results show that even though the pool surface area was kept identical for hollow trays of different sizes, the measured burning rates and fire evolutions were found to be significantly different. Besides the five stages identified by previous studies, an extra stage, fire merging, was observed. Fire merging appeared possibly at any of the first four stages and moreover resulted in 50-100% increases of the fire burning rates and heights in the present tests. The tests in wind tunnel suggested that, as the wind speed ranges from 0 m/s to 2 m/s, the burning rates decrease. However with further increase of the wind speed from 2 m/s to 7.5 m/s, the burning rate was found to increase for smaller hollow trays while it remains almost constant for larger hollow trays. Two empirical correlations are presented to predict critical burning rate of fire merging on the hollow tray. The predictions were found to be in reasonably good agreement with the measurements.


Assuntos
Incêndios , Algoritmos , Cinética , Propriedades de Superfície , Vento
18.
Mol Cell Biol ; 34(19): 3618-29, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25047836

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP), an incretin hormone secreted from gastrointestinal K cells in response to food intake, has an important role in the control of whole-body metabolism. GIP signals through activation of the GIP receptor (GIPR), a G-protein-coupled receptor (GPCR). Dysregulation of this pathway has been implicated in the development of metabolic disease. Here we demonstrate that GIPR is constitutively trafficked between the plasma membrane and intracellular compartments of both GIP-stimulated and unstimulated adipocytes. GIP induces a downregulation of plasma membrane GIPR by slowing GIPR recycling without affecting internalization kinetics. This transient reduction in the expression of GIPR in the plasma membrane correlates with desensitization to the effects of GIP. A naturally occurring variant of GIPR (E354Q) associated with an increased incidence of insulin resistance, type 2 diabetes, and cardiovascular disease in humans responds to GIP stimulation with an exaggerated downregulation from the plasma membrane and a delayed recovery of GIP sensitivity following cessation of GIP stimulation. This perturbation in the desensitization-resensitization cycle of the GIPR variant, revealed in studies of cultured adipocytes, may contribute to the link of the E354Q variant to metabolic disease.


Assuntos
Adipócitos/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Resistência à Insulina , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Células 3T3-L1 , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Membrana Celular/fisiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Variação Genética , Complexo de Golgi/fisiologia , Células HEK293 , Humanos , Camundongos , Transporte Proteico
19.
Mol Biol Cell ; 24(16): 2544-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23804653

RESUMO

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células 3T3 , Adipócitos/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Vesículas Citoplasmáticas/metabolismo , Eletroporação , Proteínas Ativadoras de GTPase/biossíntese , Transportador de Glucose Tipo 4/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Proteínas rab de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA