RESUMO
As a commercial electrode material for proton-exchange membrane water electrolyzers and fuel cells, Pt-based catalysts still face thorny issues, such as insufficient mass activity, stability, and CO tolerance. Here, we construct a bifunctional catalyst consisting of Pt-Er alloy clusters and atomically dispersed Pt and Er single atoms, which exhibits excellent activity, durability, and CO tolerance of acidic hydrogen evolution and oxidation reactions (HER and HOR). The catalyst possesses a remarkably high mass activity and TOF for HER at 63.9 times and 7.2 times more than that of Pt/C, respectively. More impressively, it can operate stably in the acidic electrolyte at 1000 mA cm-2 for more than 1200 h, thereby confirming its potential for practical applications at the industrial current density. In addition, the catalyst also demonstrates a distinguished HOR performance and outstanding CO tolerance. The synergistic effects of active sites give the catalyst exceptional activity for the hydrogen reaction, while the introduction of Er atoms greatly enhances its stability and CO tolerance. This work provides a promising idea for designing low-Pt-loading acidic HER electrocatalysts that are durable at ampere-level current densities and for constructing HOR catalysts with high CO tolerance.
RESUMO
Shape-selective catalysis plays a key role in chemical synthesis. Porous nanomaterials with uniform pore structures are ideal supports for metal nanoparticles (MNPs) to generate efficient shape-selective catalysis. However, many commercial irregular porous nanomaterials face the challenge to realize satisfactory shape selectivity due to the lack of molecular sieving structures. Herein, we report a concept of creating shape selectivity in MNPs/porous nanomaterials through intentionally poisoning certain MNPs using suitable modifiers. The remaining MNPs within the substrates can cooperate with the channels to generate selectivity. Such a strategy not only applies to regular porous nanomaterials (such as MOFs, zeolites) but also extended to irregular porous nanomaterials (such as active carbon, P25). Potentially, the matching among different MNPs, corresponding modifiers, and porous nanomaterials makes our strategy promising in selective catalytic systems.
RESUMO
Metal-organic frameworks (MOFs) with an ordered channel and porosity show great promise for a myriad of purposes. Unfortunately, the coordination bond of metal ions and organic ligands easily weakens in unfavorable environments, which poses a key problem in expanding the application of MOFs. Herein, we report a general and efficient strategy to enhance the stability and preserve the porosity of MOFs by coating them with reduced graphene oxide (rGO). The prepared hybrid material consisted of MOFs and rGO, as the core and the protective shell, respectively. It is worth noting that the obtained MOFs@rGO composite material maintained a well-defined crystal structure and showed good catalytic activity as well as enhanced stability. Notably, this novel and general method of coating MOFs with a thin protective rGO shell will broaden the application fields of MOFs and open up a new avenue for the research of MOFs.
RESUMO
The generation of green hydrogen by water splitting is identified as a key strategic energy technology, and proton exchange membrane water electrolysis (PEMWE) is one of the desirable technologies for converting renewable energy sources into hydrogen. However, the harsh anode environment of PEMWE and the oxygen evolution reaction (OER) involving four-electron transfer result in a large overpotential, which limits the overall efficiency of hydrogen production, and thus efficient electrocatalysts are needed to overcome the high overpotential and slow kinetic process. In recent years, noble metal-based electrocatalysts (e.g., Ru/Ir-based metal/oxide electrocatalysts) have received much attention due to their unique catalytic properties, and have already become the dominant electrocatalysts for the acidic OER process and are applied in commercial PEMWE devices. However, these noble metal-based electrocatalysts still face the thorny problem of conflicting performance and cost. In this review, first, noble metal Ru/Ir-based OER electrocatalysts are briefly classified according to their forms of existence, and the OER catalytic mechanisms are outlined. Then, the focus is on summarizing the improvement strategies of Ru/Ir-based OER electrocatalysts with respect to their activity and stability over recent years. Finally, the challenges and development prospects of noble metal-based OER electrocatalysts are discussed.
RESUMO
Mechanochemistry studies the effect of mechanical force on chemical bonds, bringing opportunities for synthesizing alloys, ceramics, organics, polymers, and biomaterials. A vital issue of applying macro-scale mechanical force to manipulate crystal structures is finding ways to precisely adjust the force directions to break micro-scale target chemical bonds. Inspired by a common technique of driving a wedge into the wood to make wood chopping much easier, a wedging strategy of splitting three-dimensional structured crystalline frameworks and then converting them to nanosheets was proposed, where specific molecules were wedged into crystalline frameworks to drive the directional transmission of mechanical force to break chemical bonds. As a result, various crystalline framework nanosheets including metal-organic framework nanosheets, covalent organic framework nanosheets, and coordination polymer nanosheets were fabricated. This wedging crystal strategy exhibits advantages of operability, flexibility and designability, and furthermore, it is expected to expand mechanochemistry applications in material preparation.
RESUMO
A multi-functional fluorescent probe based on PzDPM (10-ethyl-3,7-di(pyrimidin-4-yl)-10H-phenothiazine) for Hg(2+), Cu(2+) and ClO(-) has been synthesized and characterized. The probe comprises an electron-donating fluorophore core of 10-ethylphenothiazine and two Hg(2+)-specific chelating arms of pyrimidin-4-yl. The 10-ethylphenothiazine also acts as a Cu(2+)/ClO(-)-specific reactive moiety. PzDPM exhibits green fluorescence and selectively senses Hg(2+)/Cu(2+) upon coordination/reaction in acetonitrile (MeCN), and behaves as a turn-off chemosensor or ratiometric chemodosimeter, respectively. On the other hand, PzDPM is very weakly emissive in aqueous solution but acts as an excellent turn-on chemodosimeter for ClO(-) in 1 : 4 (v/v) MeCN : Tris-HCl (10 mM, pH = 7.0) with a maximum fluorescent intensity increase of over 110-fold. The probe PzDPM allows the determination of Hg(2+), Cu(2+) and ClO(-) at 10(-7) M levels with satisfactory selectivity.
Assuntos
Cobre/química , Corantes Fluorescentes/química , Ácido Hipocloroso/química , Mercúrio/química , Fenotiazinas/química , Pirimidinas/química , Técnicas Biossensoriais/métodosRESUMO
Two cyclometalated iridium(III) complexes have been prepared based on 2-(4-diphenylamino-phenyl)-quinoline and incorporating carboxylic acid ethyl ester (COOC(2)H(5), (TPAQCE)(2)Irpic and carboxylic acid (COOH, (TPAQCOOH)(2)Irpic) substituents at the 4-position of the quinoline ligand, respectively. The absorption, emission and (1)H NMR spectra of (TPAQCE)(2)Irpic and (TPAQCOOH)(2)Irpic under alkaline or acidic conditions demonstrate that they respond to the pH of the surrounding solvent environment. The deprotonation of the carboxylic acid group significantly blue-shifts the metal-to-ligand charge transfer absorption band of (TPAQCOOH)(2)Irpic by 48 nm and enhances the emission quantum-yield in DMSO. In addition, (1)H-NMR titration reveals that (TPAQCOOH)(2)Irpic is deprotonated into negatively charged (TPAQCOO(−))(2)Irpic in free DMSO-d(6) solution, and the acid-induced N^O ancillary ligands cleavage or replacement in (TPAQCOOH)(2)Irpic could be ignored. A water-soluble near-neutral optical pH probe (TPAQCOOH)(2)Irpic with pK(a) of ~7 is also reported. In aqueous buffer, (TPAQCOOH)(2)Irpic possesses an obvious emission response with an excellent linearity in the pH range of 6.508.00, showing a promising application in bioprocessing.
Assuntos
Ácidos Carboxílicos/química , Complexos de Coordenação/química , Irídio/química , Quinolinas/química , Ácidos Carboxílicos/síntese química , Complexos de Coordenação/síntese química , Concentração de Íons de Hidrogênio , Quinolinas/síntese química , Espectrofotometria UltravioletaRESUMO
A new phosphorescent chemosensor for Hg(2+) and acetonitrile (MeCN) based on iridium(III) complex Ir(dpp)(2)(dtc) (Ir1, dppH = 4,6-diphenylpyrimidine, dtcH = diethyl dithiocarbamic acid) was realized. Upon addition of a tetrahydrofuran (THF) solution of Hg(2+), the dichloromethane (DCM) solution of Ir1 gave a visual color change and significant fluorescent quenching. When MeCN was added, a new fluorescent emission emerged, which constituted a selective MeCN phosphorescent chemosensor. Complex Ir1 has been developed as an AND logic gate with Hg(2+) and MeCN as inputs.
RESUMO
With the development of flexible devices, the demand for wearable power sources has increased and gradually become imperative. Zinc-air batteries (ZABs) have attracted lots of research interest due to their high theoretical energy density and excellent safety properties, which can meet the wearable energy supply requirements. Here, the flexibility of energy storage devices is discussed first, followed by the chemistries and development of flexible ZABs. The design of flexible electrodes, the properties of solid-state electrolytes (SSEs), and the construction of deformable structures are discussed in depth. The researchers working on flexible energy storage devices will benefit from the work.
RESUMO
The electron-transport properties of various substituted molecules based on the thiol-ended thiophene dimer (2Th1DT) are investigated through density functional theory (DFT) combined with nonequilibrium Green's function (NEGF) method. The current-voltage (I-V) curves of all the Au/2Th1DT/Au systems in this work display similar steplike features, while their equilibrium conductances show a large difference and some of these I-V curves are asymmetric distinctly. The results reveal the dependence of conductance on the energy level of the substituted 2Th1DT molecules. Rectification ratios are computed to examine the asymmetric properties of the I-V curves. The rectifying behavior in the 2Th1DT molecule containing the amino group close to the molecular end is more prominent than that in the other molecules. The rectifying behavior is analyzed through transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. Slight negative differential resistance (NDR) can be observed in some of the systems. The electron-transport properties of 2Th1DT molecules containing different heteroatoms are also investigated. The results indicate that the current in heteroatom-containing molecules is larger than that in their pristine analogues, and lighter heteroatoms are more favorable than heavier heteroatoms for electron transport of the thiophene dimer.
Assuntos
Teoria Quântica , Tiofenos/química , Dimerização , Transporte de ElétronsRESUMO
Signal response of several relevant protein-cofactor interactions, united in one bioassay, may greatly enhance the ability to study the intriguing molecular mechanisms of pathological process such as the tumor immunological process of chronic inflammation and oxidative stress. Here, a peptide-based multiplexed bioassay has been developed and applied in studying the interactions among ferritin, p53, and heme under oxidative stress. In a malignant breast cancer cell line, it can be observed that oxidative stress-triggered nuclear co-translocations of heme and ferritin may lead to direct molecular contact of ferritin with p53, to pass heme to p53, which subsequently sequestered into the cytoplasm, therefore forming a possible new route of tumor survival under oxidative stress, by using the stress to circumvent oxidative stress-induced apoptosis. The observed peroxidase-like activity of ferritin-heme and p53-heme complexes may also contribute to survival. Such activity is observed most prominently in triple negative or the most malignant breast cancer subtype. These results may suggest the possible future use of this bioassay in furthering the understanding of tumor molecular pathology, as well as the early detection, diagnosis, and prognosis of cancer.
Assuntos
Bioensaio , Técnicas Biossensoriais , Ferritinas/metabolismo , Heme/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Oxirredução , Estresse Oxidativo , Peptídeos/químicaRESUMO
Easily processed, well-defined, and hierarchical uniform artificial architectures with intrinsic strong crystalline emission properties are necessary for a range of light-emitting optoelectronic devices. Herein, we designed and prepared ordered supramolecular spherulites, comprising planar conformational molecules as primary structures and multiple hydrogen bonds as physical cross-links. Compared with serious aggregation-induced fluorescence quenching (up to 70%), these highly ordered architectures exhibited unique and robust crystalline emission with a high PLQY of 55%, which was much higher than those of other terfluorenes. The primary reasons for the high PLQY are the uniform exciton energetic landscape created in the planar conformation and the highly ordered molecular packing in spherulite. Meanwhile, minimal residual defect (green-band) emissions are effectively suppressed in our oriented crystalline framework, whereas the strong and stable blue light radiations are promoted. These findings may confirm that supramolecular ordered artificial architectures may offer higher control and tunability for optoelectronic applications.
RESUMO
This report describes a facile strategy to enhance the catalytic selectivity by tuning the pore sizes of metal-organic frameworks (MOFs) in nanoparticles (NPs)/MOF composite catalysts. A general post-synthetic modification method was used to adjust the pore sizes of MOFs by using anhydrides with different chain lengths to react with amino groups in the ligands. The modified NPs/MOF catalysts exhibited enhanced size selectivity performance in the hydrogenation of olefins, which revealed the flexibility of MOFs as supporting materials for heterogeneous catalysis.
RESUMO
Flexible transparent conductive electrodes (FTCEs) are essential components for numerous optoelectronic devices. In this work, we have fabricated the hierarchical metal grids (HMG) FTCEs by a facile and low-cost, near-field photolithography strategy. Compared to normal metal grids (MG), the HMG structure can provide distinctly increased conductivity of the electrode yet without obvious reduction of the optical transmittance. This HMG sample possesses excellent optoelectronic performance and high mechanical flexibility, making it a promising component for practical applications.