Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 27(2): 778-790, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29757731

RESUMO

Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for existing face recognizers, which is heavily desired in real-world applications concerning surveillance and security. Although much research effort has been devoted to developing face de-occlusion methods, most of them can only work well under constrained conditions, such as all of faces are from a pre-defined closed set of subjects. In this paper, we propose a robust LSTM-Autoencoders (RLA) model to effectively restore partially occluded faces even in the wild. The RLA model consists of two LSTM components, which aims at occlusion-robust face encoding and recurrent occlusion removal respectively. The first one, named multi-scale spatial LSTM encoder, reads facial patches of various scales sequentially to output a latent representation, and occlusion-robustness is achieved owing to the fact that the influence of occlusion is only upon some of the patches. Receiving the representation learned by the encoder, the LSTM decoder with a dual channel architecture reconstructs the overall face and detects occlusion simultaneously, and by feat of LSTM, the decoder breaks down the task of face de-occlusion into restoring the occluded part step by step. Moreover, to minimize identify information loss and guarantee face recognition accuracy over recovered faces, we introduce an identity-preserving adversarial training scheme to further improve RLA. Extensive experiments on both synthetic and real data sets of faces with occlusion clearly demonstrate the effectiveness of our proposed RLA in removing different types of facial occlusion at various locations. The proposed method also provides significantly larger performance gain than other de-occlusion methods in promoting recognition performance over partially-occluded faces.

2.
IEEE Trans Image Process ; 26(12): 5895-5907, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28910762

RESUMO

In this paper, we consider the image super-resolution (SR) problem. The main challenge of image SR is to recover high-frequency details of a low-resolution (LR) image that are important for human perception. To address this essentially ill-posed problem, we introduce a Deep Edge Guided REcurrent rEsidual (DEGREE) network to progressively recover the high-frequency details. Different from most of the existing methods that aim at predicting high-resolution (HR) images directly, the DEGREE investigates an alternative route to recover the difference between a pair of LR and HR images by recurrent residual learning. DEGREE further augments the SR process with edge-preserving capability, namely the LR image and its edge map can jointly infer the sharp edge details of the HR image during the recurrent recovery process. To speed up its training convergence rate, by-pass connections across the multiple layers of DEGREE are constructed. In addition, we offer an understanding on DEGREE from the view-point of sub-band frequency decomposition on image signal and experimentally demonstrate how the DEGREE can recover different frequency bands separately. Extensive experiments on three benchmark data sets clearly demonstrate the superiority of DEGREE over the well-established baselines and DEGREE also provides new state-of-the-arts on these data sets. We also present addition experiments for JPEG artifacts reduction to demonstrate the good generality and flexibility of our proposed DEGREE network to handle other image processing tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA