Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 154(3): 596-608, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911324

RESUMO

The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of ß-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the ß-barrel of newly imported proteins is formed. We established a position-specific assay for monitoring ß-barrel formation in vivo and in organello and demonstrated that the ß-barrel was formed and membrane inserted while the precursor was bound to SAM. ß-barrel formation was inhibited by SAM mutants and, unexpectedly, by mutants of the central import receptor, Tom22. We show that the cytosolic domain of Tom22 links TOM and SAM into a supercomplex, facilitating precursor transfer on the intermembrane space side. Our study reveals receptor-mediated coupling of import and export translocases as a means of precursor channeling.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/química , Mutação , Porinas/química , Porinas/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
Nature ; 590(7844): 163-169, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408415

RESUMO

The mitochondrial outer membrane contains so-called ß-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of ß-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the ß-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the ß-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed ß-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a ß-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of ß-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for ß-barrel assembly.


Assuntos
Microscopia Crioeletrônica , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
3.
Nature ; 575(7782): 395-401, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31600774

RESUMO

The translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins1-4. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex5-9 at 3.8-Å resolution. The structure reveals the high-resolution architecture of the translocator consisting of two Tom40 ß-barrel channels and α-helical transmembrane subunits, providing insight into critical features that are conserved in all eukaryotes1-3. Each Tom40 ß-barrel is surrounded by small TOM subunits, and tethered by two Tom22 subunits and one phospholipid. The N-terminal extension of Tom40 forms a helix inside the channel; mutational analysis reveals its dual role in early and late steps in the biogenesis of intermembrane-space proteins in cooperation with Tom5. Each Tom40 channel possesses two precursor exit sites. Tom22, Tom40 and Tom7 guide presequence-containing preproteins to the exit in the middle of the dimer, whereas Tom5 and the Tom40 N extension guide preproteins lacking a presequence to the exit at the periphery of the dimer.


Assuntos
Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/química , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Fosfolipídeos/metabolismo , Multimerização Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
4.
J Biol Chem ; 290(44): 26523-32, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26385920

RESUMO

Two protein translocases drive the import of ß-barrel precursor proteins into the mitochondrial outer membrane: The translocase of the outer membrane (TOM complex) promotes transport of the precursor to the intermembrane space, whereas the sorting and assembly machinery (SAM complex) mediates subsequent folding of the ß-barrel and its integration into the target membrane. The non-bilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) are required for the biogenesis of ß-barrel proteins. Whether bilayer-forming phospholipids such as phosphatidylcholine (PC), the most abundant phospholipid of the mitochondrial outer membrane, play a role in the import of ß-barrel precursors is unclear. In this study, we show that PC is required for stability and function of the SAM complex during the biogenesis of ß-barrel proteins. PC further promotes the SAM-dependent assembly of the TOM complex, indicating a general role of PC for the function of the SAM complex. In contrast to PE-deficient mitochondria precursor accumulation at the TOM complex is not affected by depletion of PC. We conclude that PC and PE affect the function of distinct protein translocases in mitochondrial ß-barrel biogenesis.


Assuntos
Proteínas Mitocondriais/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/genética , Fosfatidilcolinas/genética , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Biochim Biophys Acta ; 1853(5): 1119-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25633533

RESUMO

The function of mitochondria depends on the import of proteins, which are synthesized as precursors on cytosolic ribosomes. The majority of the precursor proteins are sorted into the mitochondrial subcompartments via five distinct routes. Recent studies revealed that molecular cooperation between protein machineries is a central feature of mitochondrial protein biogenesis. First, coupling to various partner proteins affects the substrate specificity of translocases and single translocation steps. Second, there is a substantial cooperation between different protein translocases in the import of specific precursor proteins. Third, protein transport is intimately linked to processing, folding and assembly reactions. Fourth, sorting of precursor proteins is functionally and physically connected to protein machineries, which fulfill central functions for respiration, maintenance of membrane architecture and form contacts to the endoplasmic reticulum. Therefore, we propose that the protein transport systems are part of a complicated protein network for mitochondrial biogenesis.


Assuntos
Proteínas Mitocondriais/metabolismo , Animais , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Transporte Proteico , Especificidade por Substrato
6.
EMBO Rep ; 15(6): 678-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24781695

RESUMO

The mitochondrial outer membrane contains integral α-helical and ß-barrel proteins that are imported from the cytosol. The machineries importing ß-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/fisiologia , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Autorradiografia , Eletroforese em Gel de Poliacrilamida , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutagênese , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química
7.
Nat Struct Mol Biol ; 30(2): 176-187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604501

RESUMO

Mitochondrial ß-barrel proteins are essential for the transport of metabolites, ions and proteins. The sorting and assembly machinery (SAM) mediates their folding and membrane insertion. We report the cryo-electron microscopy structure of the yeast SAM complex carrying an early eukaryotic ß-barrel folding intermediate. The lateral gate of Sam50 is wide open and pairs with the last ß-strand (ß-signal) of the substrate-the 19-ß-stranded Tom40 precursor-to form a hybrid barrel in the membrane plane. The Tom40 barrel grows and curves, guided by an extended bridge with Sam50. Tom40's first ß-segment (ß1) penetrates into the nascent barrel, interacting with its inner wall. The Tom40 amino-terminal segment then displaces ß1 to promote its pairing with Tom40's last ß-strand to complete barrel formation with the assistance of Sam37's dynamic α-protrusion. Our study thus reveals a multipoint guidance mechanism for mitochondrial ß-barrel folding.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/metabolismo
8.
Cell Rep ; 31(4): 107567, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32348752

RESUMO

The mitochondrial outer membrane contains integral proteins with α-helical membrane anchors or a transmembrane ß-barrel. The translocase of the outer membrane (TOM) cooperates with the sorting and assembly machinery (SAM) in the import of ß-barrel proteins, whereas the mitochondrial import (MIM) complex inserts precursors of multi-spanning α-helical proteins. Single-spanning proteins constitute more than half of the integral outer membrane proteins; however, their biogenesis is poorly understood. We report that the yeast MIM complex promotes the insertion of proteins with N-terminal (signal-anchored) or C-terminal (tail-anchored) membrane anchors. The MIM complex exists in three dynamic populations. MIM interacts with TOM to accept precursor proteins from the receptor Tom70. Free MIM complexes insert single-spanning proteins that are imported in a Tom70-independent manner. Finally, coupling of MIM and SAM promotes early assembly steps of TOM subunits. We conclude that the MIM complex is a major and versatile protein translocase of the mitochondrial outer membrane.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Humanos , Conformação Proteica em alfa-Hélice
9.
Cell Rep ; 25(8): 2036-2043.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463002

RESUMO

Mitochondria possess elaborate machineries for the import of proteins from the cytosol. Cytosolic factors like Hsp70 chaperones and their co-chaperones, the J-proteins, guide proteins to the mitochondrial surface. The translocase of the mitochondrial outer membrane (TOM) forms the entry gate for preproteins. How the proteins are delivered to mitochondrial preprotein receptors is poorly understood. We identify the cytosolic J-protein Xdj1 as a specific interaction partner of the central receptor Tom22. Tom22 recruits Xdj1 to the mitochondrial surface to promote import of preproteins and assembly of the TOM complex. Additionally, we find that the receptor Tom70 binds a different cytosolic J-protein, Djp1. Our findings suggest that cytosolic J-proteins target distinct TOM receptors and promote the biogenesis of mitochondrial proteins.


Assuntos
Proteínas de Transporte/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
11.
J Cell Biol ; 210(7): 1047-54, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26416958

RESUMO

Biogenesis of mitochondrial ß-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of ß-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM-SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of ß-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane.


Assuntos
Citosol/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Mol Biol Cell ; 25(25): 3999-4009, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25318675

RESUMO

Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex.


Assuntos
Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo
13.
Mol Biol Cell ; 23(20): 3948-56, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22918945

RESUMO

Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport-associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of ß-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import ß-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of ß-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane ß-barrel proteins.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Proteínas Mitocondriais/química , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química
14.
J Mol Biol ; 405(1): 113-24, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21059357

RESUMO

Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central ß-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of the outer membrane plays a central role in this process. The SAM complex mediates the membrane integration of ß-barrel precursor proteins including Tom40. The small Tom proteins Tom5 and Tom6 associate with the precursor of Tom40 at the SAM complex at an early stage of the assembly process and play a stimulatory role in the formation of the mature TOM complex. A fraction of the SAM components interacts with the outer membrane protein mitochondrial distribution and morphology protein 10 (Mdm10) to form the SAM-Mdm10 machinery; however, different views exist on the function of the SAM-Mdm10 complex. We report here that the third small Tom protein, Tom7, plays an inhibitory role at two distinct steps in the biogenesis of the TOM complex. First, Tom7 plays an antagonistic role to Tom5 and Tom6 at the early stage of Tom40 assembly at the SAM complex. Second, Tom7 interacts with Mdm10 that is not bound to the SAM complex, and thus promotes dissociation of the SAM-Mdm10 complex. Since the SAM-Mdm10 complex is required for the biogenesis of Tom22, Tom7 delays the assembly of Tom22 with Tom40 at a late stage of assembly of the TOM complex. Thus, Tom7 modulates the biogenesis of topologically different proteins, the ß-barrel forming protein Tom40 and Tom22 that contains a transmembrane α-helix.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores
15.
J Cell Biol ; 194(3): 387-95, 2011 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21825073

RESUMO

The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of ß-barrel proteins of the outer membrane. Several α-helical outer membrane proteins are known to carry multiple transmembrane segments; however, only limited information is available on the biogenesis of these proteins. We report that mitochondria lacking the mitochondrial import protein 1 (Mim1) are impaired in the biogenesis of multispanning outer membrane proteins, whereas overexpression of Mim1 stimulates their import. The Mim1 complex cooperates with the receptor Tom70 in binding of precursor proteins and promotes their insertion and assembly into the outer membrane. We conclude that the Mim1 complex plays a central role in the import of α-helical outer membrane proteins with multiple transmembrane segments.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Fatores de Transcrição/metabolismo
17.
Mol Biol Cell ; 20(10): 2530-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19297525

RESUMO

The intermembrane space of mitochondria contains the specific mitochondrial intermembrane space assembly (MIA) machinery that operates in the biogenesis pathway of precursor proteins destined to this compartment. The Mia40 component of the MIA pathway functions as a receptor and binds incoming precursors, forming an essential early intermediate in the biogenesis of intermembrane space proteins. The elements that are crucial for the association of the intermembrane space precursors with Mia40 have not been determined. In this study, we found that a region within the Tim9 and Tim10 precursors, consisting of only nine amino acid residues, functions as a signal for the engagement of substrate proteins with the Mia40 receptor. Furthermore, the signal contains sufficient information to facilitate the transfer of proteins across the outer membrane to the intermembrane space. Thus, here we have identified the mitochondrial intermembrane space sorting signal required for delivery of proteins to the mitochondrial intermembrane space.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Leucina/metabolismo , Proteínas de Membrana/química , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Ligação Proteica , Precursores de Proteínas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA