Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurogastroenterol Motil ; 35(11): e14646, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37480186

RESUMO

BACKGROUND: Neurogenic bowel is a dysmotility disorder following spinal cord injury (SCI) that negatively impacts quality of life, social integration, and physical health. Colonic transit is directly modulated by the enteric nervous system. Interstitial Cells of Cajal (ICC) distributed throughout the small intestine and colon serve as specialized pacemaker cells, generating rhythmic electrical slow waves within intestinal smooth muscle, or serve as an interface between smooth muscle cells and enteric motor neurons of the myenteric plexus. Interstitial Cells of Cajal loss has been reported for other preclinical models of dysmotility, and our previous experimental SCI study provided evidence of reduced excitatory and inhibitory enteric neuronal count and smooth muscle neural control. METHODS: Immunohistochemistry for the ICC-specific marker c-Kit was utilized to examine neuromuscular remodeling of the distal colon in male and female rats with experimental SCI. KEY RESULTS: Myenteric plexus ICC (ICC-MP) exhibited increased cell counts 3 days following SCI in male rats, but did not significantly increase in females until 3 weeks after SCI. On average, ICC-MP total primary arborization length increased significantly in male rats at 3-day, 3-week, and 6-week time points, whereas in females, this increase occurred most frequently at 6 weeks post-SCI. Conversely, circular muscle ICC (ICC-CM) did not demonstrate post-SCI changes. CONCLUSIONS AND INFERENCES: These data demonstrate resiliency of the ICC-MP in neurogenic bowel following SCI, unlike seen in other related disease states. This plasticity underscores the need to further understand neuromuscular changes driving colonic dysmotility after SCI in order to advance therapeutic targets for neurogenic bowel treatment.


Assuntos
Sistema Nervoso Entérico , Intestino Neurogênico , Traumatismos da Medula Espinal , Ratos , Masculino , Feminino , Animais , Qualidade de Vida , Plexo Mientérico , Colo , Neurônios Motores , Traumatismos da Medula Espinal/complicações
2.
Exp Neurol ; 331: 113377, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526238

RESUMO

Neurogenic bowel following spinal cord injury (SCI) leads to decreased colonic motility, remodeling of the neuromuscular compartment and results in chronic evacuation difficulties. The distal colon of the rat serves a dual role for fluid absorption and storage that is homologous to the descending colon of humans. Dysmotility of the descending colon is one component of neurogenic bowel. We investigated the integrity of the enteric neuromuscular transmission responsible for the generation of excitatory and inhibitory junction potentials (EJPs and IJPs, respectively) in the distal colon of rats. We previously demonstrated a chronic reduction in colonic enteric neurons from rats with acute and chronic high-thoracic (T3) SCI and hypothesized that neurogenic bowel following T3-SCI results from diminished enteric neuromuscular transmission. Immunohistochemical labeling for myenteric neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT) neurons demonstrated a significant loss of presumptive nitric oxide (NO) and acetylcholine (ACh) immunoreactive neurons in both 3-day and 3-week injured animals. Colonic neuromuscular transmission in response to transmural electrical stimulation of the colon was significantly reduced 3-days and 3-weeks following SCI in male rats. Specifically, cholinergic-mediated excitatory junction potentials (EJPs) and nitrergic-mediated slow inhibitory junction potentials (IJPs) were significantly reduced while ATP-mediated fast IJPs remained unaffected. We conclude that a reduction in excitatory and inhibitory enteric neuromuscular transmission contributes to neurogenic bowel observed following SCI, and that these loss-of-function changes involve enteric-mediated cholinergic and nitrergic pathways.


Assuntos
Colo/inervação , Plexo Mientérico/fisiopatologia , Intestino Neurogênico/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Intestino Neurogênico/etiologia , Junção Neuromuscular/fisiopatologia , Ratos , Traumatismos da Medula Espinal/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA