Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 19(3): e1011055, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862761

RESUMO

Neisseria gonorrhoeae (Gc) is a human-specific pathogen that causes the sexually transmitted infection gonorrhea. Gc survives in neutrophil-rich gonorrheal secretions, and recovered bacteria predominantly express phase-variable, surface-expressed opacity-associated (Opa) proteins (Opa+). However, expression of Opa proteins like OpaD decreases Gc survival when exposed to human neutrophils ex vivo. Here, we made the unexpected observation that incubation with normal human serum, which is found in inflamed mucosal secretions, enhances survival of Opa+ Gc from primary human neutrophils. We directly linked this phenomenon to a novel complement-independent function for C4b-binding protein (C4BP). When bound to the bacteria, C4BP was necessary and sufficient to suppress Gc-induced neutrophil reactive oxygen species production and prevent neutrophil phagocytosis of Opa+ Gc. This research identifies for the first time a complement-independent role for C4BP in enhancing the survival of a pathogenic bacterium from phagocytes, thereby revealing how Gc exploits inflammatory conditions to persist at human mucosal surfaces.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Humanos , Neisseria gonorrhoeae/metabolismo , Neutrófilos/microbiologia , Proteína de Ligação ao Complemento C4b/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Gonorreia/microbiologia
2.
J Immunol ; 211(10): 1443-1449, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931209

RESUMO

C4b-binding protein (C4BP) is a fluid-phase complement inhibitor that prevents uncontrolled activation of the classical and lectin complement pathways. As a complement inhibitor, C4BP also promotes apoptotic cell death and is hijacked by microbes and tumors for complement evasion. Although initially characterized for its role in complement inhibition, there is an emerging recognition that C4BP functions in a complement-independent manner to promote cell survival, protect against autoimmune damage, and modulate the virulence of microbial pathogens. In this Brief Review, we summarize the structure and functions of human C4BP, with a special focus on activities that extend beyond the canonical role of C4BP in complement inhibition.


Assuntos
Proteína de Ligação ao Complemento C4b , Proteínas do Sistema Complemento , Humanos , Proteína de Ligação ao Complemento C4b/metabolismo , Proteínas do Sistema Complemento/metabolismo , Inativadores do Complemento , Lectina de Ligação a Manose da Via do Complemento , Virulência , Ligação Proteica , Complemento C4b/metabolismo
3.
Infect Immun ; 91(12): e0030923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991382

RESUMO

The bacterial pathogen Neisseria gonorrhoeae is an urgent global health problem due to increasing numbers of infections, coupled with rampant antibiotic resistance. Vaccines against gonorrhea are being prioritized to combat drug-resistant N. gonorrhoeae. Meningococcal serogroup B vaccines such as four-component meningococcal B vaccine (4CMenB) are predicted by epidemiology studies to cross-protect individuals from natural infection with N. gonorrhoeae and elicit antibodies that cross-react with N. gonorrhoeae. Evaluation of vaccine candidates for gonorrhea requires a suite of assays for predicting efficacy in vitro and in animal models of infection, including the role of antibodies elicited by immunization. Here, we present the development and optimization of assays to evaluate antibody functionality after immunization of mice: antibody binding to intact N. gonorrhoeae, serum bactericidal activity, and opsonophagocytic killing activity using primary human neutrophils [polymorphonuclear leukocytes (PMNs)]. These assays were developed with purified antibodies against N. gonorrhoeae and used to evaluate serum from mice that were vaccinated with 4CMenB or given alum as a negative control. Results from these assays will help prioritize gonorrhea vaccine candidates for advanced preclinical to early clinical studies and will contribute to identifying correlates and mechanisms of immune protection against N. gonorrhoeae.


Assuntos
Gonorreia , Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Humanos , Camundongos , Animais , Neisseria gonorrhoeae , Gonorreia/microbiologia , Infecções Meningocócicas/microbiologia , Vacinas Bacterianas , Anticorpos , Vacinas Combinadas , Anticorpos Antibacterianos , Antígenos de Bactérias
4.
J Bacteriol ; 204(4): e0003522, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35343795

RESUMO

Neisseria gonorrhoeae infection is characterized by local and abundant recruitment of neutrophils. Despite neutrophils' antimicrobial activities, viable N. gonorrhoeae is recovered from infected individuals, leading to the question of how N. gonorrhoeae survives neutrophil attack. One feature impacting N. gonorrhoeae-neutrophil interactions is the phase-variable opacity-associated (Opa) proteins. Most Opa proteins engage human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to facilitate bacterial binding and invasion. Neutrophils express two transmembrane CEACAMs, CEACAM1 and the granulocyte-specific CEACAM3. While N. gonorrhoeae isolated from infected individuals is frequently Opa+, expression of OpaD from strain FA1090, which interacts with CEACAMs 1 and 3, is associated with reduced N. gonorrhoeae survival after exposure to human neutrophils. In this study, we hypothesized that the receptor-binding capability of individual Opa proteins impacts bacterial survival in the presence of neutrophils. To test this hypothesis, we introduced opa genes that are constitutively expressed into a derivative of strain FA1090 with all 11 opa genes deleted. The engineered genes encode Opa proteins that bind CEACAM1 and -3, CEACAM1 but not CEACAM3, or neither CEACAM1 nor -3. N. gonorrhoeae expressing CEACAM3-binding Opa proteins survived significantly less well than bacteria expressing other Opa proteins when exposed to primary human neutrophils. The CEACAM3-binding N. gonorrhoeae had significantly greater association with and internalization by neutrophils. However, once internalized, bacteria were similarly killed inside neutrophils, regardless of Opa expression. Furthermore, Opa expression did not significantly impact neutrophil granule mobilization. Our findings indicate that the extent to which Opa proteins mediate nonopsonic binding is the predominant determinant of bacterial survival from neutrophils. IMPORTANCE Neisseria gonorrhoeae, the cause of gonorrhea, is an urgent-threat pathogen due to increasing numbers of infections and increased antibiotic resistance. Many surface components of N. gonorrhoeae are phase variable, including the Opa protein family of adhesins and invasins. While Opa protein expression is selected for in vivo, bacteria expressing some Opa proteins are readily killed by neutrophils, which are recruited to sites of infection. The reason for this discrepancy has remained unresolved. Our work shows that Opa-dependent differences in bacterial survival after exposure to primary human neutrophils correlates with Opa-dependent bacterial binding and phagocytosis. These findings underscore how the ability of N. gonorrhoeae to change Opa expression through phase variation contributes to bacterial resistance to neutrophil clearance.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Antígenos de Bactérias/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Gonorreia/microbiologia , Humanos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Neutrófilos/microbiologia , Fagocitose
5.
Cytometry A ; 97(10): 1081-1089, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32484607

RESUMO

Human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are a family of receptors that mediate intercellular interactions. Pathogenic bacteria have ligands that bind CEACAMs on human cells. Neisseria gonorrhoeae (Gc) encodes numerous unique outer membrane opacity-associated (Opa) proteins that are ligands for one or more CEACAMs. CEACAMs that are expressed on epithelial cells facilitate Gc colonization, while those expressed on neutrophils affect phagocytosis and consequent intracellular survival of Gc. Since Opa protein expression is phase-variable, variations in receptor tropism affect how individual bacteria within a population interact with host cells. Here we report the development of a rapid, quantitative method for collecting and analyzing fluorescence intensity data from thousands of cells in a population using imaging flow cytometry to detect N-CEACAM bound to the surface of Opa-expressing Gc. We use this method to confirm previous findings regarding Opa-CEACAM interactions and to examine the receptor-ligand interactions of Gc expressing other Opa proteins, as well as for other N-CEACAM proteins. © 2020 International Society for Advancement of Cytometry.


Assuntos
Proteínas da Membrana Bacteriana Externa , Neisseria gonorrhoeae , Antígenos de Bactérias , Moléculas de Adesão Celular , Citometria de Fluxo , Humanos , Neutrófilos
6.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577557

RESUMO

The bacterial pathogen Neisseria gonorrhoeae is an urgent global health problem due to increasing numbers of infections, coupled with rampant antibiotic resistance. Vaccines against gonorrhea are being prioritized to combat drug-resistant N. gonorrhoeae. Meningococcal serogroup B vaccines such as 4CMenB are predicted by epidemiology studies to cross-protect individuals from natural infection with N. gonorrhoeae and elicit antibodies that cross-react with N. gonorrhoeae. Evaluation of vaccine candidates for gonorrhea requires a suite of assays for predicting efficacy in vitro and in animal models of infection, including the role of antibodies elicited by immunization. Here we present assays to evaluate antibody functionality after immunization: antibody binding to intact N. gonorrhoeae, serum bactericidal activity, and opsonophagocytic killing activity using primary human neutrophils (polymorphonuclear leukocytes). These assays were developed with purified antibodies against N. gonorrhoeae and used to evaluate serum from mice that were vaccinated with 4CMenB or given alum as a negative control. Results from these assays will help prioritize gonorrhea vaccine candidates for advanced preclinical to early clinical study and will contribute to identifying correlates and mechanisms of immune protection against N. gonorrhoeae .

7.
J Leukoc Biol ; 114(1): 1-20, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36882066

RESUMO

CR3 (CD11b/CD18; αmß2 integrin) is a conserved phagocytic receptor. The active conformation of CR3 binds the iC3b fragment of complement C3 as well as many host and microbial ligands, leading to actin-dependent phagocytosis. There are conflicting reports about how CR3 engagement affects the fate of phagocytosed substrates. Using imaging flow cytometry, we confirmed that binding and internalization of iC3b-opsonized polystyrene beads by primary human neutrophils was CR3-dependent. iC3b-opsonized beads did not stimulate neutrophil reactive oxygen species, and most beads were found in primary granule-negative phagosomes. Similarly, Neisseria gonorrhoeae that does not express phase-variable Opa proteins suppresses neutrophil reactive oxygen species and delays phagolysosome formation. Here, binding and internalization of Opa-deleted (Δopa) N. gonorrhoeae by adherent human neutrophils was inhibited using blocking antibodies against CR3 and by adding neutrophil inhibitory factor, which targets the CD11b I-domain. No detectable C3 was deposited on N. gonorrhoeae in the presence of neutrophils alone. Conversely, overexpressing CD11b in HL-60 promyelocytes enhanced Δopa N. gonorrhoeae phagocytosis, which required the CD11b I-domain. Phagocytosis of N. gonorrhoeae was also inhibited in mouse neutrophils that were CD11b-deficient or treated with anti-CD11b. Phorbol ester treatment upregulated surface CR3 on neutrophils in suspension, enabling CR3-dependent phagocytosis of Δopa N. gonorrhoeae. Neutrophils exposed to Δopa N. gonorrhoeae had limited phosphorylation of Erk1/2, p38, and JNK. Neutrophil phagocytosis of unopsonized Mycobacterium smegmatis, which also resides in immature phagosomes, was CR3-dependent and did not elicit reactive oxygen species. We suggest that CR3-mediated phagocytosis is a silent mode of entry into neutrophils, which is appropriated by diverse pathogens to subvert phagocytic killing.


Assuntos
Neutrófilos , Fagocitose , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antígeno de Macrófago 1/metabolismo , Complemento C3b/metabolismo , Receptores de Complemento/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA