Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 73(7): 1110-1123, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38378253

RESUMO

OBJECTIVE: Intestinal fibrosis is considered an inevitable consequence of chronic IBD, leading to stricture formation and need for surgery. During the process of fibrogenesis, extracellular matrix (ECM) components critically regulate the function of mesenchymal cells. We characterised the composition and function of ECM in fibrostenosing Crohn's disease (CD) and control tissues. DESIGN: Decellularised full-thickness intestinal tissue platforms were tested using three different protocols, and ECM composition in different tissue phenotypes was explored by proteomics and validated by quantitative PCR (qPCR) and immunohistochemistry. Primary human intestinal myofibroblasts (HIMFs) treated with milk fat globule-epidermal growth factor 8 (MFGE8) were evaluated regarding the mechanism of their antifibrotic response, and the action of MFGE8 was tested in two experimental intestinal fibrosis models. RESULTS: We established and validated an optimal decellularisation protocol for intestinal IBD tissues. Matrisome analysis revealed elevated MFGE8 expression in CD strictured (CDs) tissue, which was confirmed at the mRNA and protein levels. Treatment with MFGE8 inhibited ECM production in normal control HIMF but not CDs HIMF. Next-generation sequencing uncovered functionally relevant integrin-mediated signalling pathways, and blockade of integrin αvß5 and focal adhesion kinase rendered HIMF non-responsive to MFGE8. MFGE8 prevented and reversed experimental intestinal fibrosis in vitro and in vivo. CONCLUSION: MFGE8 displays antifibrotic effects, and its administration may represent a future approach for prevention of IBD-induced intestinal strictures.


Assuntos
Antígenos de Superfície , Doença de Crohn , Matriz Extracelular , Fibrose , Proteínas do Leite , Humanos , Animais , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia , Antígenos de Superfície/metabolismo , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Modelos Animais de Doenças , Camundongos , Ratos
2.
Gastroenterology ; 165(5): 1180-1196, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507073

RESUMO

BACKGROUND & AIMS: Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding its pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full-thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single-cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. METHODS: We performed scRNAseq of 13 fresh full-thickness CD resections containing noninvolved, inflamed nonstrictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next-generation sequencing, proteomics, and animal models. RESULTS: Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and up-regulated, and its profibrotic function was validated using NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and knock-out and antibody-mediated CDH11 blockade in experimental colitis. CONCLUSIONS: A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and open potential therapeutic developments. This work has been posted as a preprint on Biorxiv under doi: 10.1101/2023.04.03.534781.


Assuntos
Colite , Doença de Crohn , Animais , Doença de Crohn/genética , Doença de Crohn/patologia , Constrição Patológica , Intestinos/patologia , Colite/patologia , Fibroblastos/patologia
3.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338944

RESUMO

We aimed to test how the postbiotic butyrate impacts select gut bacteria, small intestinal epithelial integrity, and microvascular endothelial activation during acute ethanol exposure in mice and primary human intestinal microvascular endothelial cells (HIMECs). Supplementation during an acute ethanol challenge with or without tributyrin, a butyrate prodrug, was delivered to C57BL/6 mice. A separate group of mice received 3 days of clindamycin prior to the acute ethanol challenge. Upon euthanasia, blood endotoxin, cecal bacteria, jejunal barrier integrity, and small intestinal lamina propria dendritic cells were assessed. HIMECs were tested for activation following exposure to ethanol ± lipopolysaccharide (LPS) and sodium butyrate. Tributyrin supplementation protected a butyrate-generating microbe during ethanol and antibiotic exposure. Tributyrin rescued ethanol-induced disruption in jejunal epithelial barrier, elevated plasma endotoxin, and increased mucosal vascular addressin cell-adhesion molecule-1 (MAdCAM-1) expression in intestinal microvascular endothelium. These protective effects of tributyrin coincided with a tolerogenic dendritic response in the intestinal lamina propria. Lastly, sodium butyrate pre- and co-treatment attenuated the direct effects of ethanol and LPS on MAdCAM-1 induction in the HIMECs from a patient with ulcerative colitis. Tributyrin supplementation protects small intestinal epithelial and microvascular barrier integrity and modulates microvascular endothelial activation and dendritic tolerizing function during a state of gut dysbiosis and acute ethanol challenge.


Assuntos
Células Endoteliais , Etanol , Camundongos , Humanos , Animais , Etanol/farmacologia , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo
4.
Gut ; 71(1): 55-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33468536

RESUMO

OBJECTIVE: Creeping fat, the wrapping of mesenteric fat around the bowel wall, is a typical feature of Crohn's disease, and is associated with stricture formation and bowel obstruction. How creeping fat forms is unknown, and we interrogated potential mechanisms using novel intestinal tissue and cell interaction systems. DESIGN: Tissues from normal, UC, non-strictured and strictured Crohn's disease intestinal specimens were obtained. The muscularis propria matrisome was determined via proteomics. Mesenteric fat explants, primary human preadipocytes and adipocytes were used in multiple ex vivo and in vitro cell migration systems on muscularis propria muscle cell derived or native extracellular matrix. Functional experiments included integrin characterisation via flow cytometry and their inhibition with specific blocking antibodies and chemicals. RESULTS: Crohn's disease muscularis propria cells produced an extracellular matrix scaffold which is in direct spatial and functional contact with the immediately overlaid creeping fat. The scaffold contained multiple proteins, but only fibronectin production was singularly upregulated by transforming growth factor-ß1. The muscle cell-derived matrix triggered migration of preadipocytes out of mesenteric fat, fibronectin being the dominant factor responsible for their migration. Blockade of α5ß1 on the preadipocyte surface inhibited their migration out of mesenteric fat and on 3D decellularised intestinal tissue extracellular matrix. CONCLUSION: Crohn's disease creeping fat appears to result from the migration of preadipocytes out of mesenteric fat and differentiation into adipocytes in response to an increased production of fibronectin by activated muscularis propria cells. These new mechanistic insights may lead to novel approaches for prevention of creeping fat-associated stricture formation.


Assuntos
Adipócitos/patologia , Movimento Celular , Doença de Crohn/patologia , Intestinos/patologia , Músculo Liso/patologia , Adipogenia/fisiologia , Tecido Adiposo/patologia , Diferenciação Celular , Células Cultivadas , Matriz Extracelular/patologia , Fibronectinas/metabolismo , Humanos , Alicerces Teciduais
5.
Gastroenterology ; 148(7): 1405-1416.e3, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25701737

RESUMO

BACKGROUND & AIMS: Defects in colonic epithelial barrier defenses are associated with ulcerative colitis (UC). The proteins that regulate bacterial clearance in the colonic epithelium have not been completely identified. The Drosophila chromosome-associated protein D3 (dCAP-D3) regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS: Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing small hairpin RNAs against CAP-D3. We used immunoblot assays to measure levels of CAP-D3 in colonic epithelial cells from patients with UC and healthy individuals (controls). RNA sequencing identified genes activated by CAP-D3. We analyzed the roles of CAP-D3 target genes in bacterial clearance using gentamycin protection and immunofluorescence assays and studies with pharmacologic inhibitors. RESULTS: CAP-D3 expression was reduced in colonic epithelial cells from patients with active UC. Reduced CAP-D3 expression decreased autophagy and impaired intracellular bacterial clearance by HT-29 and Caco-2 colonic epithelial cells. Lower levels of CAP-D3 increased transcription of genes encoding SLC7A5 and SLC3A2, the products of which heterodimerize to form an amino acid transporter in HT-29 cells after bacterial infection; levels of SLC7A5-SLC3A2 were increased in tissues from patients with UC compared with controls. Reduced CAP-D3 in HT-29 cells resulted in earlier recruitment of SLC7A5 to Salmonella-containing vacuoles, increased activity of mTORC1, and increased survival of bacteria. Inhibition of SLC7A5-SLC3A2 or mTORC1 activity rescued the bacterial clearance defects of CAP-D3-deficient cells. CONCLUSIONS: CAP-D3 down-regulates transcription of genes that encode amino acid transporters (SLC7A5 and SLC3A2) to promote bacterial autophagy by colon epithelial cells. Levels of CAP-D3 protein are reduced in patients with active UC; strategies to increase its levels might restore mucosal homeostasis to patients with active UC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Salmonella/fisiologia , Adenosina Trifosfatases , Autofagia , Células CACO-2 , Proteínas de Ciclo Celular/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Proteínas de Drosophila , Células Epiteliais/imunologia , Escherichia coli/imunologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Regulação da Expressão Gênica , Células HT29 , Humanos , Imunidade Inata , Mucosa Intestinal/imunologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Viabilidade Microbiana , Complexos Multiproteicos/metabolismo , Interferência de RNA , Salmonella/imunologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção
6.
Am J Pathol ; 185(9): 2550-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26185013

RESUMO

The endothelial-to-mesenchymal transition (EndoMT) is a crucial cellular process during heart development necessary to the formation of cardiac valves. This embryonic process reappears in several pathological situations, such as vascular injury or organ fibrosis of various etiologies, as a mediator of extracellular matrix-producing cells. Because radiation induces both vascular damage and fibrosis, we investigated whether radiation exposure induces EndoMT in primary human intestinal microvascular endothelial cells (HIMECs) and whether EndoMT contributes to radiation-induced rectal damage in humans and in a preclinical model of radiation proctitis in mice. Irradiated HIMECs show phenotypic hallmarks of radiation-induced endothelial cell activation in vitro. Moreover, HIMECs undergo changes in molecular expression pattern compatible with EndoMT, with up-regulation of mesenchymal markers and down-regulation of endothelial markers via transforming growth factor/Smad pathway activation. In vivo, EndoMT readily occurs in the human rectum after radiation therapy for rectal adenocarcinoma. Finally, EndoMT was observed in rectal mucosal and submucosal microvessels in a preclinical model of radiation proctitis in Tie2-green fluorescent protein reporter-expressing mice all along radiation proctitis development, also associated with transforming growth factor/Smad pathway activation. In conclusion, radiation-induced cell activation and tissue inflammation constitute a setting that fosters the phenotypic conversion of endothelial cells into mesenchymal cells. Therefore, EndoMT is identified as a potential participant in radiation-induced gut damage and may represent an interesting therapeutic target in cases of radiation-induced pelvic disease.


Assuntos
Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Proctite/metabolismo , Lesões por Radiação/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Fibrose/patologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Proctite/genética , Proctite/patologia , Regulação para Cima/efeitos da radiação
7.
Am J Pathol ; 185(6): 1624-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25864926

RESUMO

Intestinal epithelial cell (IEC) death is typical of inflammatory bowel disease (IBD). We investigated: i) whether IEC-released necrotic cell products (proinflammatory mediators) amplify mucosal inflammation, ii) the capacity of necrotic cell lysates from HT29 cells or human IECs to induce human intestinal fibroblasts' (HIF) production of IL-6 and IL-8, and iii) whether IL-1α, released by injured colonocytes, exacerbated experimental IBD. Necrotic cell lysates potently induced HIF IL-6 and IL-8 production independent of Toll-like receptors 2 and 4, receptor for advanced glycation end-products, high-mobility group box 1, uric acid, IL-33, or inflammasome activation. IL-1α was the key IEC-derived necrotic cell product involved in HIF cytokine production. IL-1α-positive cells were identified in the epithelium in human IBD and dextran sulfate sodium (DSS)-induced colitis. IL-1α was detected in the stool of colitic mice before IL-1ß. IL-1α enemas reactivated inflammation after DSS colitis recovery, induced IL-1 receptor expression in subepithelial fibroblasts, and activated de novo inflammation even in mice without overt colitis, after the administration of low-dose DSS. IL-1α amplifies gut inflammation by inducing cytokine production by mesenchymal cells. IL-1α-mediated IEC-fibroblast interaction may be involved in amplifying and perpetuating inflammation, even without obvious intestinal damage. IL-1α may be a target for treating early IBD or preventing the reactivation of IBD.


Assuntos
Colite/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Interleucina-1alfa/metabolismo , Mucosa Intestinal/metabolismo , Animais , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Fibroblastos/patologia , Células HT29 , Humanos , Inflamação/patologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Intestinos/patologia , Camundongos
8.
Gastroenterology ; 146(5): 1266-77.e1-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24486052

RESUMO

BACKGROUND & AIMS: Patients with eosinophilic esophagitis (EoE) often become dysphagic from the combination of organ fibrosis and motor abnormalities. We investigated mechanisms of dysphagia, assessing the response of human esophageal fibroblasts (HEFs), human esophageal muscle cells (HEMCs), and esophageal muscle strips to eosinophil-derived products. METHODS: Biopsy specimens were collected via endoscopy from the upper, middle, and lower thirds of the esophagus of 18 patients with EoE and 21 individuals undergoing endoscopy for other reasons (controls). Primary cultures of esophageal fibroblasts and muscle cells were derived from 12 freshly resected human esophagectomy specimens. Eosinophil distribution was investigated by histologic analyses of full-thickness esophageal tissue. Active secretion of EoE-related mediators was assessed from medium underlying mucosal biopsy cultures. We quantified production of fibronectin and collagen I by HEF and HEMC in response to eosinophil products. We also measured the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 by, and adhesion of human eosinophils to, HEFs and HEMCs. Eosinophil products were tested in an esophageal muscle contraction assay. RESULTS: Activated eosinophils were present in all esophageal layers. Significantly higher concentrations of eosinophil-related mediators were secreted spontaneously in mucosal biopsy specimens from patients with EoE than controls. Exposure of HEFs and HEMCs to increasing concentrations of eosinophil products or co-culture with eosinophils caused HEFs and HEMCs to increase secretion of fibronectin and collagen I; this was inhibited by blocking transforming growth factor ß1 and p38 mitogen-activated protein kinase signaling. Eosinophil binding to HEFs and HEMCs increased after incubation of mesenchymal cells with eosinophil-derived products, and decreased after blockade of transforming growth factor ß1 and p38 mitogen-activated protein kinase blockade. Eosinophil products reduced electrical field-induced contraction of esophageal muscle strips, but not acetylcholine-induced contraction. CONCLUSIONS: In an analysis of tissues samples from patients with EoE, we linked the presence and activation state of eosinophils in EoE with altered fibrogenesis and motility of esophageal fibroblasts and muscle cells. This process might contribute to the development of dysphagia.


Assuntos
Citocinas/metabolismo , Transtornos de Deglutição/etiologia , Deglutição , Esofagite Eosinofílica/complicações , Eosinófilos/imunologia , Contração Muscular , Células Th2/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Idoso , Biópsia , Estudos de Casos e Controles , Adesão Celular , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Colágeno Tipo I/metabolismo , Transtornos de Deglutição/imunologia , Transtornos de Deglutição/metabolismo , Transtornos de Deglutição/patologia , Transtornos de Deglutição/fisiopatologia , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/metabolismo , Esofagite Eosinofílica/patologia , Esofagite Eosinofílica/fisiopatologia , Eosinófilos/metabolismo , Esofagoscopia , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibronectinas/metabolismo , Fibrose , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/patologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Th2/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Am J Pathol ; 184(12): 3405-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25307345

RESUMO

The expression of neurotensin (NT) and its receptor (NTR1) is up-regulated in experimental colitis and inflammatory bowel disease; NT/NTR1 interactions regulate gut inflammation. During active inflammation, metabolic shifts toward hypoxia lead to the activation of hypoxia-inducible factor (HIF)-1, which enhances vascular endothelial growth factor (VEGF) expression, promoting angiogenesis. We hypothesized that NT/NTR1 signaling regulates intestinal manifestations of hypoxia and angiogenesis by promoting HIF-1 transcriptional activity and VEGFα expression in experimental colitis. We studied NTR1 signaling in colitis-associated angiogenesis using 2,4,6-trinitrobenzenesulfonic acid-treated wild-type and NTR1-knockout mice. The effects of NT on HIF-1α and VEGFα were assessed on human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1) and human intestinal microvascular-endothelial cells. NTR1-knockout mice had reduced microvascular density and mucosal integrity score compared with wild-type mice after 2,4,6-trinitrobenzenesulfonic acid treatment. VEGFα mRNA levels were increased in NCM460-NTR1 cells treated with 10(-7) mol/L NT, at 1 and 6 hours post-treatment. NT exposure in NCM460-NTR1 cells caused stabilization, nuclear translocation, and transcriptional activity of HIF-1α in a diacylglycerol kinase-dependent manner. NT did not stimulate tube formation in isolated human intestinal macrovascular endothelial cells but did so in human intestinal macrovascular endothelial cells cocultured with NCM460-NTR1 cells. Our results demonstrate the importance of an NTR1-HIF-1α-VEGFα axis in intestinal angiogenic responses and in the pathophysiology of colitis and inflammatory bowel disease.


Assuntos
Colo/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Neurotensina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Colite/patologia , Colo/citologia , Modelos Animais de Doenças , Células Endoteliais/citologia , Humanos , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Intestinos/irrigação sanguínea , Masculino , Camundongos , Microcirculação , Neovascularização Patológica , Ácido Trinitrobenzenossulfônico/química , Regulação para Cima
10.
Gut ; 63(11): 1728-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24515806

RESUMO

OBJECTIVE: Previous studies have shown that ulcerative colitis (UC) is associated with the presence of lamina propria non-invariant (Type II) NKT cells producing IL-13 and mediating epithelial cell cytotoxicity. Here we sought to define the antigen(s) stimulating the NKT cells and to quantitate these cells in the UC lamina propria. DESIGN: Detection of Type II NKT cells in UC lamina propria mononuclear cells (LPMC) with lyso-sulfatide loaded tetramer and quantum dot-based flow cytometry and staining. Culture of UC LPMCs with lyso-sulfatide glycolipid to determine sulfatide induction of epithelial cell cytotoxicity, IL-13 production and IL-13Rα2 expression. Blinded quantum dot-based phenotypic analysis to assess UC LPMC expression of IL-13Rα2, CD161 and IL-13. RESULTS: Approximately 36% of UC LPMC were lyso-sulfatide tetramer positive, whereas few, if any, control LPMCs were positive. When tested, the positive cells were also CD3 and IL-13Rα2 positive. Culture of UC LPMC with lyso-sulfatide glycolipid showed that sulfatide stimulates UC LPMC production of IL-13 and induces UC CD161 LPMC-mediated cytotoxicity of activated epithelial cells; additionally, lyso-sulfatide induces enhanced expression of IL-13Rα2. Finally, blinded phenotypic analysis of UC LP MC using multicolour quantum dot-staining technology showed that approximately 60% of the LPMC bear both IL-13Rα2 and CD161 and most of these cells also produce IL-13. CONCLUSIONS: These studies show that UC lamina propria is replete with Type II NKT cells responsive to lyso-sulfatide glycolipid and bearing IL-13Rα2. Since lyso-sulfatide is a self-antigen, these data suggest that an autoimmune response is involved in UC pathogenesis.


Assuntos
Autoantígenos/imunologia , Colite Ulcerativa/imunologia , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Mucosa Intestinal/imunologia , Subpopulações de Linfócitos/imunologia , Células T Matadoras Naturais/imunologia , Glicolipídeos , Humanos , Técnicas In Vitro , Psicosina/análogos & derivados , Psicosina/imunologia , Regulação para Cima/imunologia
11.
Gastroenterology ; 144(3): 613-623.e9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23149220

RESUMO

BACKGROUND & AIMS: In intestinal inflammation the gut microbiota induces an innate immune response by activating epithelial and immune cells that initiate or maintain inflammation. We investigated whether the microbiota also can activate local microvascular cells and induce angiogenesis. METHODS: Human intestinal microvascular endothelial cells (HIMEC) and human intestinal fibroblasts (HIF) were exposed to bacterial ligands specific for Toll-like receptor (TLR)2/6 and 4, and NOD1 and NOD2, and cell proliferation, migration, transmigration, tube formation, and production of pro-angiogenic factors were measured. The ability of the ligands to induce ex vivo vessel sprouting in an aortic ring assay and in vivo angiogenesis using a collagen gel assay also were assessed. RESULTS: Bacterial ligands induced proliferation, migration, transmigration, tube formation of HIMEC, vessel sprouting, and in vivo angiogenesis; they also stimulated production of angiogenic factors from HIMEC and HIF, and HIF-derived angiogenic factors promoted HIMEC proliferation. To various degrees, all ligands induced angiogenic responses, but these were ligand- and cell type-dependent. Responses were mediated through receptor interacting protein-2 (RIP2)- and tumor necrosis factor receptor-associated factor 6 (TRAF6)-dependent signaling, involved the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways and the up-regulation of vascular endothelial growth factor receptor 2 (VEGF-R2) and focal adhesion kinase (FAK). Knockdown of RIP2 and TRAF6 by RNA interference and neutralization of interleukin-8, basic fibroblast growth factor, and vascular endothelial growth factor inhibited TLR-/NOD-like receptor-induced HIMEC angiogenesis. CONCLUSIONS: The gut microbiota can selectively activate mucosal endothelial and mesenchymal cells to promote specific angiogenic responses in a TLR- and NOD-like receptor-dependent fashion. This innate immunity-mediated response may expand the mucosal microvascular network, foster immune cell recruitment, and contribute to chronic intestinal inflammation.


Assuntos
Intestinos/irrigação sanguínea , Intestinos/microbiologia , Metagenoma/fisiologia , Neovascularização Fisiológica , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores Toll-Like/metabolismo , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/fisiologia , Humanos , NF-kappa B/metabolismo , Interferência de RNA , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Microbiol Resour Announc ; 13(4): e0115223, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38411071

RESUMO

Surgically removed bowels from Crohn's disease patients exhibit a novel form of micropathologies known as cavernous fistulous tract microlesions (CavFT), resembling fissures. We announce the genomes/plasmids and antimicrobial resistance genes of six CavFT bacterial isolates representing the Bacteroidota genera Bacteroides and Phocaeicola. Plasmids were identified in Bacteroides cellulosilyticus and Phocaeicola vulgatus.

13.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260564

RESUMO

Crohn's disease (CD) has been traditionally viewed as a chronic inflammatory disease that cause gut wall thickening and complications, including fistulas, by mechanisms not understood. By focusing on Parabacteroides distasonis (presumed modern succinate-producing commensal probiotic), recovered from intestinal microfistulous tracts (cavernous fistulous micropathologies CavFT proposed as intermediate between 'mucosal fissures' and 'fistulas') in two patients that required surgery to remove CD-damaged ilea, we demonstrate that such isolates exert pathogenic/pathobiont roles in mouse models of CD. Our isolates are clonally-related; potentially emerging as transmissible in the community and mice; proinflammatory and adapted to the ileum of germ-free mice prone to CD-like ileitis (SAMP1/YitFc) but not healthy mice (C57BL/6J), and cytotoxic/ATP-depleting to HoxB8-immortalized bone marrow derived myeloid cells from SAMP1/YitFc mice when concurrently exposed to succinate and extracts from CavFT-derived E. coli , but not to cells from healthy mice. With unique genomic features supporting recent genetic exchange with Bacteroides fragilis -BGF539, evidence of international presence in primarily human metagenome databases, these CavFT Pdis isolates could represent to a new opportunistic Parabacteroides species, or subspecies (' cavitamuralis' ) adapted to microfistulous niches in CD.

14.
Gastroenterology ; 143(4): 1017-26.e9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22749932

RESUMO

BACKGROUND & AIMS: Defective apoptosis of lamina propria T cells (LPTs) is involved in the pathogenesis of Crohn's disease. Survivin, a member of the inhibitors of apoptosis family, prevents cell death and regulates cell division. Survivin has been studied extensively in cancer, but little is known about its role in Crohn's disease. METHODS: LPTs were isolated from mucosal samples of patients with Crohn's disease or ulcerative colitis and healthy individuals (controls). LPTs were activated with interleukin-2 or via CD3, CD2, and CD28 signaling, and cultured at 42°C to induce heat shock. Survivin expression was assessed by immunohistochemistry, confocal microscopy, and immunoblotting; survivin levels were reduced by RNA interference. Cell viability, apoptosis, and proliferation were measured by trypan blue exclusion, annexin-V/7-Aminoactinomycin D staining, and uptake of [3]thymidine, respectively. RESULTS: LPTs from patients with Crohn's disease had higher levels of survivin than LPTs from patients with ulcerative colitis or controls. RNA knockdown of survivin in LPTs inhibited their proliferation and promoted apoptosis. Levels of survivin were low in LPTs from patients with ulcerative colitis and controls as a result of ubiquitin-mediated proteasome degradation. In LPTs from patients with Crohn's disease, survivin bound to the heat shock protein (HSP)90, and therefore was resistant to proteasome degradation. Incubating LPTs with 17-N-allylamino-17-demethoxygeldanamycin, an inhibitor of HSP90, reduced levels of survivin and induced apoptosis. CONCLUSIONS: Levels of survivin are increased in LPTs from patients with Crohn's disease (compared with ulcerative colitis and controls) because survivin interacts with HSP90 and prevents proteasome degradation. This allows LPTs to avoid apoptosis. Strategies to restore apoptosis to these cells might be developed to treat patients with Crohn's disease.


Assuntos
Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Linfócitos T/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose , Antígenos CD2/metabolismo , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Complexo CD3/farmacologia , Núcleo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Citoplasma/metabolismo , Endopeptidase K/farmacologia , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Interleucina-2/farmacologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais , Fosforilação/efeitos dos fármacos , Proteólise , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais , Survivina , Linfócitos T/efeitos dos fármacos , Linfócitos T/enzimologia , Ubiquitinação , Adulto Jovem
15.
Matrix Biol ; 115: 71-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574533

RESUMO

Acute and chronic alcohol exposure compromise intestinal epithelial integrity, due to reduced expression of anti-microbial peptides (AMP) and loss of tight junction integrity. Ameliorating gut damage is beneficial in preventing associated distant organ pathologies. Orally administered purified hyaluronan (HA) polymers with an average size of 35 kDa have multiple protective effects in the gut and are well-tolerated in humans. Therefore, we tested the hypothesis that HA35 ameliorates ethanol-induced gut damage. Specifically, mechanisms that restore epithelial barrier integrity and normalize expression of the Reg3 class of C-type lectin AMPs (i.e. Reg3ß and Reg3γ) were investigated. Chronic ethanol feeding to mice reduced expression of C-type lectin AMPs in the proximal small intestine (jejunum), reduced expression of tight junction proteins and increased bacterial translocation to the mesenteric lymph node. Oral consumption of HA35 during the last 6 days of ethanol exposure ameliorated the effects of chronic ethanol. Similarly, in vitro challenge of isolated intestinal organoids from murine jejunum with ethanol reduced the expression of C-type lectin AMPs and impaired barrier integrity; these ethanol-induced responses were prevented by pre-treatment with HA35. Importantly, HA receptor null jejunum-derived organoids demonstrated that the HA receptor Tlr4, but not Cd44 nor Tlr2, was required for the protective effect of HA35. Consistent with the data from organoids, HA35 did not protect Tlr4-deficient mice from chronic ethanol-induced intestinal injury. Together, these data suggest therapeutic administration of HA35 is beneficial in restoring gut epithelial integrity and defense during the early stages of ethanol-driven intestinal damage.


Assuntos
Etanol , Ácido Hialurônico , Humanos , Camundongos , Animais , Etanol/toxicidade , Ácido Hialurônico/metabolismo , Receptor 4 Toll-Like/genética , Lectinas Tipo C
16.
STAR Protoc ; 4(4): 102686, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37925636

RESUMO

Single-cell isolation techniques allow the investigation of physical and functional relationships between individual cells within a complex cell population. Here, we present a protocol for single-cell isolation from full-thickness intestinal tissue resections. We describe steps for pre-processing specimens, isolation of lamina propria and muscular layers, and red blood cell lysis. We then detail fixation of isolated cells and assessment of cell quality. The resulting cell suspension can be subjected to RNA sequencing on the 10× Chromium platform. For complete details on the use and execution of this protocol, please refer to Mukherjee et al.1.


Assuntos
Eritrócitos , Técnicas Histológicas , Humanos , Morte Celular , Separação Celular , Análise de Sequência de RNA
17.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066202

RESUMO

Background: Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding it's pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. Methods: We performed scRNAseq of 13 fresh full thickness CD resections containing non-involved, inflamed non-strictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next generation sequencing, proteomics and animal models. Results: Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and upregulated, and its pro-fibrotic function was validated by NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and two animal models of experimental colitis. Conclusion: A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and opens potential therapeutic developments.

18.
Am J Pathol ; 179(5): 2660-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21945322

RESUMO

In addition to mesenchymal cells, endothelial cells may contribute to fibrosis through the process of endothelial-to-mesenchymal transition (EndoMT). We investigated whether human intestinal microvascular endothelial cells (HIMEC) undergo EndoMT and contribute to fibrosis in human and experimental inflammatory bowel disease (IBD). HIMEC were exposed to TGF-ß1, IL-1ß, and TNF-α or supernatants of lamina propria mononuclear cells (LPMC) and evaluated for morphological, phenotypic, and functional changes compatible with EndoMT. Genomic analysis was used to identify transcription factors involved in the transformation process. Evidence of in situ and in vivo EndoMT was sought in inflamed human and murine intestine. The combination of TGF-ß1, IL-1ß and TNF-α, or activated LPMC supernatants induced morphological and phenotypic changes consistent with EndoMT with a dominant effect by IL-1. These changes persisted after removal of the inducing agents and were accompanied by functional loss of acetylated LDL-uptake and migratory capacity, and acquisition of de novo collagen synthesis capacity. Sp1 appeared to be the main transcriptional regulator of EndoMT. EndoMT was detected in microvessels of inflammatory bowel disease (IBD) mucosa and experimental colonic fibrosis of Tie2-green fluorescent protein (GFP) reporter-expressing mice. In conclusion, chronic inflammation induces transdifferentiation of intestinal mucosal microvascular cells into mesenchymal cells, suggesting that the intestinal microvasculature contributes to IBD-associated fibrosis through the novel process of EndoMT.


Assuntos
Transdiferenciação Celular/fisiologia , Citocinas/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/patologia , Doenças Inflamatórias Intestinais/patologia , Mesoderma/patologia , Animais , Movimento Celular/fisiologia , Transdiferenciação Celular/genética , Células Cultivadas , Colite/patologia , Colágeno Tipo I/metabolismo , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Fibrose , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Microvasos/patologia , Fenótipo , Fatores de Transcrição/metabolismo , Regulação para Cima
19.
Matrix Biol ; 113: 1-21, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108990

RESUMO

OBJECTIVE: Inflammatory bowel diseases (IBD) cause chronic intestinal damage and extracellular matrix (ECM) remodeling. The ECM may play an active role in inflammation by modulating immune cell functions, including cell adhesion, but this hypothesis has not been tested in IBD. DESIGN: Primary human intestinal myofibroblast (HIMF)-derived ECM from IBD and controls, 3D decellularized colon or ECM molecule-coated scaffolds were tested for their adhesiveness for T cells. Matrisome was analysed via proteomics. Functional integrin blockade was used to investigate the underlying mechanism. Analysis of the pediatric Crohn's disease (CD) RISK inception cohort was used to explore an altered ECM gene expression as a potential predictor for a future complicated disease course. RESULTS: HIMF-derived ECM and 3D decellularized colonic ECM from IBD bound more T cells compared to control. Control HIMFs exposed to the pro-inflammatory cytokines Iinterleukin-1ß (IL-1ß) and tumor necrosis factor (TNF) increased, and to transforming growth factor-ß1 (TGF-ß1) decreased ECM adhesiveness to T cells. Matrisome analysis of the HIMF-derived ECM revealed collagen VI as a major culprit for differences in T cell adhesion. Collagen VI knockdown in HIMF reduced adhesion T cell as did the blockage of integrin αvß1. Elevated gene expression of collagen VI in biopsies of pediatric CD patients was linked to risk for future stricturing disease. CONCLUSION: HIMF-derived ECM in IBD binds a remarkably enhanced number of T cells, which is dependent on Collagen VI and integrin αvß1. Collagen VI expression is a risk factor for a future complicated CD course. Blocking immune cells retention may represent a novel approach to treatment in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Miofibroblastos , Criança , Humanos , Miofibroblastos/metabolismo , Adesividade , Linfócitos T/patologia , Colágeno/metabolismo , Inflamação/metabolismo
20.
Mucosal Immunol ; 13(4): 665-678, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32020030

RESUMO

Intestinal fibrosis leading to strictures remains a significant clinical problem in inflammatory bowel diseases (IBD). The role of bacterial components in activating intestinal mesenchymal cells and driving fibrogenesis is largely unexplored. Tamoxifen-inducible α-SMA promoter Cre mice crossed with floxed MyD88 mice were subjected to chronic dextran sodium sulfate colitis. MyD88 was deleted prior to or after induction of colitis. Human intestinal myofibroblasts (HIMF) were exposed to various bacterial components and assessed for fibronectin (FN) and collagen I (Col1) production. RNA sequencing was performed. Post-transcriptional regulation was assessed by polysome profiling assay. Selective deletion of MyD88 in α-SMA-positive cells prior to, but not after induction of, experimental colitis decreased the degree of intestinal fibrosis. HIMF selectively responded to flagellin with enhanced FN or Col1 protein production in a MyD88-dependent manner. RNA sequencing suggested minimal transcriptional changes induced by flagellin in HIMF. Polysome profiling revealed higher proportions of FN and Col1 mRNA in the actively translated fractions of flagellin exposed HIMF, which was mediated by eIF2 alpha and 4EBP1. In conclusion, selectivity of flagellin-induced ECM secretion in HIMF is post-transcriptionally regulated. The results may represent a novel and targetable link between the gut microbiota and intestinal fibrogenesis.


Assuntos
Actinas/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Fator 88 de Diferenciação Mieloide/deficiência , Transdução de Sinais , Animais , Biomarcadores , Células Cultivadas , Suscetibilidade a Doenças , Matriz Extracelular , Fibroblastos/metabolismo , Fibrose , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Camundongos , Processamento Pós-Transcricional do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA