Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 54, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302873

RESUMO

BACKGROUND: Transcriptome assembly from RNA-sequencing data in species without a reliable reference genome has to be performed de novo, but studies have shown that de novo methods often have inadequate ability to reconstruct transcript isoforms. We address this issue by constructing an assembly pipeline whose main purpose is to produce a comprehensive set of transcript isoforms. RESULTS: We present the de novo transcript isoform assembler ClusTrast, which takes short read RNA-seq data as input, assembles a primary assembly, clusters a set of guiding contigs, aligns the short reads to the guiding contigs, assembles each clustered set of short reads individually, and merges the primary and clusterwise assemblies into the final assembly. We tested ClusTrast on real datasets from six eukaryotic species, and showed that ClusTrast reconstructed more expressed known isoforms than any of the other tested de novo assemblers, at a moderate reduction in precision. For recall, ClusTrast was on top in the lower end of expression levels (<15% percentile) for all tested datasets, and over the entire range for almost all datasets. Reference transcripts were often (35-69% for the six datasets) reconstructed to at least 95% of their length by ClusTrast, and more than half of reference transcripts (58-81%) were reconstructed with contigs that exhibited polymorphism, measuring on a subset of reliably predicted contigs. ClusTrast recall increased when using a union of assembled transcripts from more than one assembly tool as primary assembly. CONCLUSION: We suggest that ClusTrast can be a useful tool for studying isoforms in species without a reliable reference genome, in particular when the goal is to produce a comprehensive transcriptome set with polymorphic variants.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Análise de Sequência , RNA-Seq , Análise de Sequência de RNA , Isoformas de Proteínas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
New Phytol ; 236(5): 1951-1963, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36076311

RESUMO

Reproductive phase change is well characterized in angiosperm model species, but less studied in gymnosperms. We utilize the early cone-setting acrocona mutant to study reproductive phase change in the conifer Picea abies (Norway spruce), a gymnosperm. The acrocona mutant frequently initiates cone-like structures, called transition shoots, in positions where wild-type P. abies always produces vegetative shoots. We collect acrocona and wild-type samples, and RNA-sequence their messenger RNA (mRNA) and microRNA (miRNA) fractions. We establish gene expression patterns and then use allele-specific transcript assembly to identify mutations in acrocona. We genotype a segregating population of inbred acrocona trees. A member of the SQUAMOSA BINDING PROTEIN-LIKE (SPL) gene family, PaSPL1, is active in reproductive meristems, whereas two putative negative regulators of PaSPL1, miRNA156 and the conifer specific miRNA529, are upregulated in vegetative and transition shoot meristems. We identify a mutation in a putative miRNA156/529 binding site of the acrocona PaSPL1 allele and show that the mutation renders the acrocona allele tolerant to these miRNAs. We show co-segregation between the early cone-setting phenotype and trees homozygous for the acrocona mutation. In conclusion, we demonstrate evolutionary conservation of the age-dependent flowering pathway and involvement of this pathway in regulating reproductive phase change in the conifer P. abies.


Assuntos
Picea , Traqueófitas , Picea/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Meristema/metabolismo , Reprodução/genética , Traqueófitas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA