Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243726

RESUMO

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Assuntos
Artrópodes , Animais , Biodiversidade , Mudança Climática , Ecossistema , Folhas de Planta
2.
Ecology ; 105(1): e4204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926440

RESUMO

Cities can have profound impacts on ecosystems, yet our understanding of these impacts is currently limited. First, the effects of the socioeconomic dimensions of human society are often overlooked. Second, correlative analyses are common, limiting our causal understanding of mechanisms. Third, most research has focused on terrestrial systems, ignoring aquatic systems that also provide important ecosystem services. Here we compare the effects of human population density and low-income prevalence on the macroinvertebrate communities and ecosystem processes within water-filled artificial tree holes. We hypothesized that these human demographic variables would affect tree holes in different ways via changes in temperature, water nutrients, and the local tree hole environment. We recruited community scientists across Greater Vancouver (Canada) to provide host trees and tend 50 tree holes over 14 weeks of colonization. We quantified tree hole ecosystems in terms of aquatic invertebrates, litter decomposition, and chlorophyll a (chl a). We compiled potential explanatory variables from field measurements, satellite images, or census databases. Using structural equation models, we showed that invertebrate abundance was affected by low-income prevalence but not human population density. This was driven by cosmopolitan species of Ceratopogonidae (Diptera) with known associations to anthropogenic containers. Invertebrate diversity and abundance were also affected by environmental factors, such as temperature, elevation, water nutrients, litter quantity, and exposure. By contrast, invertebrate biomass, chl a, and litter decomposition were not affected by any measured variables. In summary, this study shows that some urban ecosystems can be largely unaffected by human population density. Our study also demonstrates the potential of using artificial tree holes as a standardized, replicated habitat for studying urbanization. Finally, by combining community science and urban ecology, we were able to involve our local community in this pandemic research pivot.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Cidades , Clorofila A , Invertebrados , Árvores , Insetos , Água
3.
Ecology ; 103(4): e3639, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060615

RESUMO

The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.


Assuntos
Artrópodes , Animais , Biodiversidade , Ecossistema , Insetos , Folhas de Planta , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA