Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(1): 253-265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37578203

RESUMO

INTRODUCTION: Multiple infectious agents, including viruses, bacteria, fungi, and protozoa, have been linked to Alzheimer's disease (AD) risk by independent lines of evidence. We explored this association by comparing the frequencies of viral species identified in a large sample of AD cases and controls. METHODS: DNA sequence reads that did not align to the human genome in sequences were mapped to viral reference sequences, quantified, and then were tested for association with AD in whole exome sequences (WES) and whole genome sequences (WGS) datasets. RESULTS: Several viruses were significant predictors of AD according to the machine learning classifiers. Subsequent regression analyses showed that herpes simplex type 1 (HSV-1) (odds ratio [OR] = 3.71, p = 8.03 × 10-4) and human papillomavirus 71 (HPV-71; OR = 3.56, p = 0.02), were significantly associated with AD after Bonferroni correction. The phylogenetic-related cluster of Herpesviridae was significantly associated with AD in several strata of the data (p < 0.01). DISCUSSION: Our results support the hypothesis that viral infection, especially HSV-1, is associated with AD risk.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , Humanos , Doença de Alzheimer/complicações , Filogenia , Herpesvirus Humano 1/genética , DNA
2.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29760215

RESUMO

The gonococcal Opa proteins are an antigenically variable family of surface adhesins that bind human carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), CEACAM3, CEACAM5, and/or CEACAM6, cell surface glycoproteins that are differentially expressed on a broad spectrum of human cells and tissues. While they are presumed to be important for infection, the significance of various Opa-CEACAM-mediated cellular interactions in the context of the genital tract has remained unclear. Here, we observed that CEACAM1 and CEACAM5 are differentially expressed on epithelia lining the upper and lower portions of the human female genital tract, respectively. Using transgenic mouse lines expressing human CEACAMs in a manner that reflects this differential pattern, we considered the impact of Opa-CEACAM interactions during uncomplicated lower genital tract infections versus during pelvic inflammatory disease. Our results demonstrate that Opa-CEACAM5 binding on vaginal epithelia facilitates the long-term colonization of the lower genital tract, while Opa protein binding to CEACAM1 on uterine epithelia enhances gonococcal association and penetration into these tissues. While these Opa-dependent interactions with CEACAM-expressing epithelial surfaces promote infection, Opa binding by neutrophil-expressed CEACAMs counterbalances this by facilitating more effective gonococcal clearance. Furthermore, during uterine infections, CEACAM-dependent tissue invasion aggravates disease pathology by increasing the acute inflammatory response. Together, these findings demonstrate that the outcome of infection is determined by both the cell type-specific expression of human CEACAMs and the CEACAM specificity of the Opa variants expressed, which combine to determine the level of gonococcal association with the genital mucosa versus the extent of CEACAM-dependent inflammation and gonococcal clearance by neutrophils.


Assuntos
Antígenos CD/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Genitália Feminina/patologia , Gonorreia/fisiopatologia , Infecções do Sistema Genital/fisiopatologia , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Genitália Feminina/microbiologia , Gonorreia/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neisseria gonorrhoeae/fisiologia , Infecções do Sistema Genital/microbiologia , Resultado do Tratamento , Útero/microbiologia , Útero/patologia , Vagina/microbiologia , Vagina/patologia
3.
BMC Genomics ; 19(1): 627, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134832

RESUMO

BACKGROUND: The emergence of fully antimicrobial resistant Neisseria gonorrhoeae has led global public health agencies to identify a critical need for next generation anti-gonococcal pharmaceuticals. The development and success of these compounds will rely upon valid pre-clinical models of gonorrhoeae infection. We recently developed and reported the first model of upper genital tract gonococcal infection. During initial characterization, we observed significant reproductive cycle-based variation in infection outcome. When uterine infection occurred in the diestrus phase, there was significantly greater pathology than during estrus phase. The aim of this study was to evaluate transcriptional profiles of infected uterine tissue from mice in either estrus or diestrus phase in order to elucidate possible mechanisms for these differences. RESULTS: Genes and biological pathways with phase-independent induction during infection showed a chemokine dominant cytokine response to Neisseria gonorrhoeae. Despite general induction being phase-independent, this common anti-gonococcal response demonstrated greater induction during diestrus phase infection. Greater activity of granulocyte adhesion and diapedesis regulators during diestrus infection, particularly in chemokines and diapedesis regulators, was also shown. In addition to a greater induction of the common anti-gonococcal response, Gene Set Enrichment Analysis identified a diestrus-specific induction of type-1 interferon signaling pathways. CONCLUSIONS: This transcriptional analysis of murine uterine gonococcal infection during distinct points in the natural reproductive cycle provided evidence for a common anti-gonococcal response characterized by significant induction of granulocyte chemokine expression and high proinflammatory mediators. The basic biology of this host response to N. gonorrhoeae in estrus and diestrus is similar at the pathway level but varies drastically in magnitude. Overlaying this, we observed type-1 interferon induction specifically in diestrus infection where greater pathology is observed. This supports recent work suggesting this pathway has a significant, possibly host-detrimental, function in gonococcal infection. Together these findings lay the groundwork for further examination of the role of interferons in gonococcal infection. Additionally, this work enables the implementation of the diestrus uterine infection model using the newly characterized host response as a marker of pathology and its prevention as a correlate of candidate vaccine efficacy and ability to protect against the devastating consequences of N. gonorrhoeae-associated sequelae.


Assuntos
Ciclo Estral/fisiologia , Gonorreia/genética , Interações Hospedeiro-Patógeno/genética , Inflamação/genética , Neisseria gonorrhoeae , Infecções do Sistema Genital/genética , Transcriptoma , Animais , Modelos Animais de Doenças , Ciclo Estral/genética , Feminino , Perfilação da Expressão Gênica , Gonorreia/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/fisiopatologia , Camundongos , Análise em Microsséries , Neisseria gonorrhoeae/imunologia , Infecções do Sistema Genital/imunologia , Infecções do Sistema Genital/microbiologia
4.
J Immunol ; 190(3): 1148-57, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23264656

RESUMO

Porphyromonas gingivalis is a primary etiological agent of chronic periodontal disease, an infection-driven chronic inflammatory disease that leads to the resorption of tooth-supporting alveolar bone. We previously reported that TLR2 is required for P. gingivalis-induced alveolar bone loss in vivo, and our in vitro work implicated TNF as a key downstream mediator. In this study, we show that TNF-deficient (Tnf(-/-)) mice are resistant to alveolar bone loss following oral infection with P. gingivalis, and thus establish a central role for TNF in experimental periodontal disease. Using bone marrow-derived macrophages (BMDM) from wild-type and gene-specific knockout mice, we demonstrate that the initial inflammatory response to P. gingivalis in naive macrophages is MyD88 dependent and requires cooperative signaling of TLR2 and TLR4. The ability of P. gingivalis to activate cells via TLR2 or TLR4 was confirmed in TLR2- or TLR4-transformed human embryonic kidney cells. Additional studies using bacterial mutants demonstrated a role for fimbriae in the modulation of TLR-mediated activation of NF-κB. Whereas both TLR2 and TLR4 contributed to TNF production in naive macrophages, P. gingivalis preferentially exploited TLR2 in endotoxin-tolerant BMDM to trigger excessive TNF production. We found that TNF induced surface TLR2 expression and augmented TLR-induced cytokine production in P. gingivalis-stimulated BMDM, establishing a previously unidentified TNF-dependent feedback loop. Adoptive transfer of TLR2-expressing macrophages to TLR2-deficient mice restored the ability of P. gingivalis to induce alveolar bone loss in vivo. Collectively, our results identify a TLR2- and TNF-dependent macrophage-specific mechanism underlying pathogen-induced inflammatory bone loss in vivo.


Assuntos
Perda do Osso Alveolar/etiologia , Infecções por Bacteroidaceae/imunologia , Gengivite/fisiopatologia , Macrófagos/fisiologia , Porphyromonas gingivalis/patogenicidade , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Transferência Adotiva , Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/fisiopatologia , Animais , Antibioticoprofilaxia , Infecções por Bacteroidaceae/microbiologia , Fímbrias Bacterianas/fisiologia , Regulação da Expressão Gênica/imunologia , Gengivite/complicações , Gengivite/imunologia , Células HEK293 , Humanos , Teste de Cultura Mista de Linfócitos , Ativação de Macrófagos , Macrófagos/transplante , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/fisiologia , NF-kappa B/metabolismo , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/ultraestrutura , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Fator de Necrose Tumoral alfa/deficiência
5.
J Struct Biol ; 185(3): 440-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361688

RESUMO

Among all Neisseriae species, Neisseria meningitidis and Neisseria gonorrhoeae are the only human pathogens, causative agents of bacterial meningitis and gonorrhoea, respectively. PorB, a pan-Neisseriae trimeric porin that mediates diffusive transport of essential molecules across the bacterial outer membrane, is also known to activate host innate immunity via Toll-like receptor 2 (TLR2)-mediated signaling. The molecular mechanism of PorB binding to TLR2 is not known, but it has been hypothesized that electrostatic interactions contribute to ligand/receptor binding. Strain-specific sequence variability in the surface-exposed loops of PorB which are potentially implicated in TLR2 binding, may explain the difference in TLR2-mediated cell activation in vitro by PorB homologs from the commensal Neisseriae lactamica and the pathogen N. meningitidis. Here, we report a comparative structural analysis of PorB from N. meningitidis serogroup B strain 8765 (63% sequence homology with PorB from N. meningitidis serogroup W135) and a mutant in which amino acid substitutions in the extracellular loop 7 lead to significantly reduced TLR2-dependent activity in vitro. We observe that this mutation both alters the loop conformation and causes dramatic changes of electrostatic surface charge, both of which may affect TLR2 recognition and signaling.


Assuntos
Neisseria meningitidis/metabolismo , Porinas/química , Porinas/metabolismo , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
6.
BMC Genomics ; 15: 1176, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25540039

RESUMO

BACKGROUND: Atherosclerosis is a progressive disease characterized by inflammation and accumulation of lipids in vascular tissue. Porphyromonas gingivalis (Pg) and Chlamydia pneumoniae (Cp) are associated with inflammatory atherosclerosis in humans. Similar to endogenous mediators arising from excessive dietary lipids, these Gram-negative pathogens are pro-atherogenic in animal models, although the specific inflammatory/atherogenic pathways induced by these stimuli are not well defined. In this study, we identified gene expression profiles that characterize P. gingivalis, C. pneumoniae, and Western diet (WD) at acute and chronic time points in aortas of Apolipoprotein E (ApoE-/-) mice. RESULTS: At the chronic time point, we observed that P. gingivalis was associated with a high number of unique differentially expressed genes compared to C. pneumoniae or WD. For the top 500 differentially expressed genes unique to each group, we observed a high percentage (76%) that exhibited decreased expression in P. gingivalis-treated mice in contrast to a high percentage (96%) that exhibited increased expression in WD mice. C. pneumoniae treatment resulted in approximately equal numbers of genes that exhibited increased and decreased expression. Gene Set Enrichment Analysis (GSEA) revealed distinct stimuli-associated phenotypes, including decreased expression of mitochondrion, glucose metabolism, and PPAR pathways in response to P. gingivalis but increased expression of mitochondrion, lipid metabolism, carbohydrate and amino acid metabolism, and PPAR pathways in response to C. pneumoniae; WD was associated with increased expression of immune and inflammatory pathways. DAVID analysis of gene clusters identified by two-way ANOVA at acute and chronic time points revealed a set of core genes that exhibited altered expression during the natural progression of atherosclerosis in ApoE-/- mice; these changes were enhanced in P. gingivalis-treated mice but attenuated in C. pneumoniae-treated mice. Notable differences in the expression of genes associated with unstable plaques were also observed among the three pro-atherogenic stimuli. CONCLUSIONS: Despite the common outcome of P. gingivalis, C. pneumoniae, and WD on the induction of vascular inflammation and atherosclerosis, distinct gene signatures and pathways unique to each pro-atherogenic stimulus were identified. Our results suggest that pathogen exposure results in dysregulated cellular responses that may impact plaque progression and regression pathways.


Assuntos
Aorta/metabolismo , Apolipoproteínas E/deficiência , Chlamydophila pneumoniae/fisiologia , Dieta Ocidental/efeitos adversos , Perfilação da Expressão Gênica , Porphyromonas gingivalis/fisiologia , Animais , Aorta/patologia , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica/genética , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/microbiologia , Placa Aterosclerótica/patologia
7.
J Immunol ; 188(2): 569-77, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22156342

RESUMO

In vivo anti-polysaccharide Ig responses to isolated polysaccharide (PS) are T cell independent, rapid, and fail to generate memory. However, little is known regarding PS-specific Ig responses to intact gram-positive and gram-negative extracellular bacteria. We previously demonstrated that intact heat-killed Streptococcus pneumoniae, a gram-positive bacterium, elicited a rapid primary pneumococcal capsular PS (PPS) response in mice that was dependent on CD4(+) T cells, B7-dependent costimulation, and CD40-CD40L interactions. However, this response was ICOS independent and failed to generate a boosted PPS-specific secondary IgG response. In the current study, we analyzed the murine meningococcal type C PS (MCPS)-specific Ig response to i.p.-injected intact, heat-killed Neisseria meningitidis, serogroup C (MenC), a gram-negative bacterium. In contrast to S. pneumoniae, the IgG anti-MCPS response to MenC exhibited delayed primary kinetics and was highly boosted after secondary immunization, whereas the IgG anti-MCPS response to isolated MCPS was rapid, without secondary boosting, and consisted of only IgG1 and IgG3, as opposed to all four IgG isotypes in response to intact MenC. The secondary, but not primary, IgG anti-MCPS response to MenC was dependent on CD4(+) T cells, CD40L, CD28, and ICOS. The primary and secondary IgG anti-MCPS responses were lower in TLR4-defective (C3H/HeJ) but not TLR2(-/-) or MyD88(-/-) mice, but secondary boosting was still observed. Of interest, coimmunization of S. pneumoniae and MenC resulted in a boosted secondary IgG anti-PPS response to S. pneumoniae. Our data demonstrate that the nature of the in vivo anti-PS response is markedly influenced by the composition and/or architecture of the bacterial subcapsular domain.


Assuntos
Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/imunologia , Neisseria meningitidis Sorogrupo C/imunologia , Polissacarídeos Bacterianos/imunologia , Animais , Antígenos de Bactérias/administração & dosagem , Cápsulas Bacterianas/administração & dosagem , Células Cultivadas , Feminino , Imunização Secundária , Imunoglobulina G/biossíntese , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Polissacarídeos Bacterianos/administração & dosagem , Estrutura Terciária de Proteína , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
8.
iScience ; 27(1): 108749, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269092

RESUMO

Generating large-scale, high-fidelity sequencing data is challenging and, furthermore, not much has been done to characterize adjuvants' effects at the repertoire level. Thus, we introduced an IgSeq pipeline that standardized library prep protocols and data analysis functions for accurate repertoire profiling. We then studied systemically effects of CpG and Alum on the Ig heavy chain repertoire using the ovalbumin (OVA) murine model. Ig repertoires of different tissues (spleen and bone marrow) and isotypes (IgG and IgM) were examined and compared in IGHV mutation, gene usage, CDR3 length, clonal diversity, and clonal selection. We found Ig repertoires of different compartments exhibited distinguishable profiles at the non-immunized steady state, and distinctions became more pronounced upon adjuvanted immunizations. Notably, Alum and CpG effects exhibited different tissue- and isotype-preferences. The former led to increased diversity of abundant clones in bone marrow, and the latter promoted the selection of IgG clones in both tissues.

9.
Vaccines (Basel) ; 11(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140249

RESUMO

Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, poses a significant global public health threat. Infection in women can be asymptomatic and may result in severe reproductive complications. Escalating antibiotic resistance underscores the need for an effective vaccine. Approaches being explored include subunit vaccines and outer membrane vesicles (OMVs), but an ideal candidate remains elusive. Meningococcal OMV-based vaccines have been associated with reduced rates of gonorrhea in retrospective epidemiologic studies, and with accelerated gonococcal clearance in mouse vaginal colonization models. Cross-protection is attributed to shared antigens and possibly cross-reactive, bactericidal antibodies. Using a Candidate Antigen Selection Strategy (CASS) based on the gonococcal transcriptome during human mucosal infection, we identified new potential vaccine targets that, when used to immunize mice, induced the production of antibodies with bactericidal activity against N. gonorrhoeae strains. The current study determined antigen recognition by human sera from N. gonorrhoeae-infected subjects, evaluated their potential as a multi-antigen (combination) vaccine in mice and examined the impact of different adjuvants (Alum or Alum+MPLA) on functional antibody responses to N. gonorrhoeae. Our results indicated that a stronger Th1 immune response component induced by Alum+MPLA led to antibodies with improved bactericidal activity. In conclusion, a combination of CASS-derived antigens may be promising for developing effective gonococcal vaccines.

10.
Infect Immun ; 80(10): 3417-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22825445

RESUMO

Toll-like receptors (TLRs) play a major role in host mucosal and systemic defense mechanisms by recognizing a diverse array of conserved pathogen-associated molecular patterns (PAMPs). TLR2, with TLR1 and TLR6, recognizes structurally diverse bacterial products such as lipidated factors (lipoproteins and peptidoglycans) and nonlipidated proteins, i.e., bacterial porins. PorB is a pan-neisserial porin expressed regardless of organisms' pathogenicity. However, commensal Neisseria lactamica organisms and purified N. lactamica PorB (published elsewhere as Nlac PorB) induce TLR2-dependent proinflammatory responses of lower magnitude than N. meningitidis organisms and N. meningitidis PorB (published elsewhere as Nme PorB). Both PorB types bind to TLR2 in vitro but with different apparent specificities. The structural and molecular details of PorB-TLR2 interaction are only beginning to be unraveled and may be due to electrostatic attraction. PorB molecules have significant strain-specific sequence variability within surface-exposed regions (loops) putatively involved in TLR2 interaction. By constructing chimeric recombinant PorB loop mutants in which surface-exposed loop residues have been switched between N. lactamica PorB and N. meningitidis PorB, we identified residues in loop 5 and loop 7 that influence TLR2-dependent cell activation using HEK cells and BEAS-2B cells. These loops are not uniquely responsible for PorB interaction with TLR2, but NF-κB and MAP kinases signaling downstream of TLR2 recognition are likely influenced by a hypothetical "TLR2-binding signature" within the sequence of PorB surface-exposed loops. Consistent with the effect of purified PorB in vitro, a chimeric N. meningitidis strain expressing N. lactamica PorB induces lower levels of interleukin 8 (IL-8) secretion than wild-type N. meningitidis, suggesting a role for PorB in induction of host cell activation by whole bacteria.


Assuntos
Neisseria lactamica/metabolismo , Porinas/metabolismo , Receptor 2 Toll-Like/metabolismo , Sequência de Aminoácidos , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Células HEK293 , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Modelos Moleculares , Mutação , Neisseria lactamica/genética , Porinas/química , Porinas/genética , Ligação Proteica , Conformação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
11.
Clin Immunol ; 138(1): 33-40, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20947433

RESUMO

There is a need for developing vaccines that elicit mucosal immunity. Although oral or nasal vaccination methods would be ideal, current strategies have yielded mixed success. Toll-like receptor 2 (TLR2) ligands are effective adjuvants and are currently used in the Haemophilus influenzae type B vaccine. Induction of humoral immunity in the mucosa is critical for effective vaccination; thus, we sought to determine the effects of TLR2 ligands on human mucosal B cell differentiation. We demonstrate that TLR2 ligands induce CCR9 and CCR10 expression by circulating B cells and increased chemotaxis to cognate chemokines CCL25 and CCL28 suggesting that TLR2 induces B cell homing to the gastrointestinal tract. TLR2 stimulation of B cells also induced J chain and IgA production demonstrating the induction of mucosal-like antibody secreting cells. These observations suggest that vaccines containing TLR2-ligands as adjuvants could induce mucosal B cell immunity even when delivered in a non-mucosal manner.


Assuntos
Linfócitos B/metabolismo , Imunidade nas Mucosas/imunologia , Imunoglobulina A/biossíntese , Receptores de Retorno de Linfócitos/metabolismo , Receptor 2 Toll-Like/metabolismo , Adolescente , Adulto , Idoso , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Quimiocinas CC/farmacologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Profilaxia Dentária , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Íleo/imunologia , Íleo/metabolismo , Íleo/patologia , Cadeias J de Imunoglobulina/metabolismo , Imunoglobulina M/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Interleucina-10/farmacologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Lipopolissacarídeos/sangue , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Porinas/imunologia , Porinas/farmacologia , Receptores CCR/genética , Receptores CCR/metabolismo , Receptores CCR10/genética , Receptores CCR10/metabolismo , Adulto Jovem
12.
Front Immunol ; 12: 624197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815376

RESUMO

Vaccines have played a pivotal role in improving public health, however, many infectious diseases lack an effective vaccine. Controlling the spread of infectious diseases requires continuing studies to develop new and improved vaccines. Our laboratory has been investigating the immune enhancing mechanisms of Toll-like receptor (TLR) ligand-based adjuvants, including the TLR2 ligand Neisseria meningitidis outer membrane protein, PorB. Adjuvant use of PorB increases costimulatory factors on antigen presenting cells (APC), increases antigen specific antibody production, and cytokine producing T cells. We have demonstrated that macrophage expression of MyD88 (required for TLR2 signaling) is an absolute requirement for the improved antibody response induced by PorB. Here-in, we specifically investigated the role of subcapsular CD169+ marginal zone macrophages in antibody production induced by the use of TLR-ligand based adjuvants (PorB and CpG) and non-TLR-ligand adjuvants (aluminum salts). CD169 knockout mice and mice treated with low dose clodronate treated animals (which only remove marginal zone macrophages), were used to investigate the role of these macrophages in adjuvant-dependent antibody production. In both sets of mice, total antigen specific immunoglobulins (IgGs) were diminished regardless of adjuvant used. However, the greatest reduction was seen with the use of TLR ligands as adjuvants. In addition, the effect of the absence of CD169+ macrophages on adjuvant induced antigen and antigen presenting cell trafficking to the lymph nodes was examined using immunofluorescence by determining the relative extent of antigen loading on dendritic cells (DCs) and antigen deposition on follicular dendritic cells (FDC). Interestingly, only vaccine preparations containing PorB had significant decreases in antigen deposition in lymphoid follicles and germinal centers in CD169 knockout mice or mice treated with low dose clodronate as compared to wildtype controls. Mice immunized with CpG containing preparations demonstrated decreased FDC networks in the mice treated with low dose clodronate. Conversely, alum containing preparations only demonstrated significant decreases in IgG in CD169 knockout mice. These studies stress that importance of subcapsular macrophages and their unique role in adjuvant-mediated antibody production, potentially due to an effect of these adjuvants on antigen trafficking to the lymph node and deposition on follicular dendritic cells.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Imunogenicidade da Vacina , Macrófagos/efeitos dos fármacos , Oligodesoxirribonucleotídeos/farmacologia , Ovalbumina/farmacologia , Porinas/farmacologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Receptores Toll-Like/agonistas , Animais , Ácido Clodrônico/farmacologia , Células Dendríticas Foliculares/efeitos dos fármacos , Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Imunoglobulina G/sangue , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodesoxirribonucleotídeos/imunologia , Ovalbumina/imunologia , Porinas/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Vacinação
13.
Infect Immun ; 78(12): 5314-23, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20937766

RESUMO

The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin's surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.


Assuntos
Neisseria lactamica/imunologia , Infecções por Neisseriaceae/imunologia , Porinas/imunologia , Mucosa Respiratória/microbiologia , Receptor 2 Toll-Like/imunologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Imunidade Celular/imunologia , Imunidade Celular/fisiologia , Interleucina-8/imunologia , Interleucina-8/fisiologia , Porinas/fisiologia , Mucosa Respiratória/imunologia , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Receptor 1 Toll-Like/imunologia , Receptor 1 Toll-Like/fisiologia , Receptor 2 Toll-Like/fisiologia
15.
Infect Immun ; 78(3): 994-1003, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20028813

RESUMO

Meningococcal porin PorB is an inhibitor of apoptosis induced via the intrinsic pathway in various cell types. This effect is attributed to prevention of mitochondrial depolarization and of subsequent release of proapoptotic mitochondrial factors. To determine whether apoptosis is globally inhibited by PorB, we compared the intrinsic and extrinsic pathways in HeLa cells. Interestingly, PorB does not prevent extrinsic apoptosis induced by tumor necrosis factor alpha plus cycloheximide, suggesting a unique mitochondrial pathway specificity. Several intracellular factors regulated by NF-kappaB, including members of the Bcl-2 family and of the inhibitor of apoptosis (IAP) family, play major roles in controlling apoptosis, and some of them are thought to contribute to the antiapoptotic effect of the gonococcal porin, PIB. However, most of the members of the Bcl-2 family and the IAP family are not induced by meningococcal PorB in HeLa cells, with the exception of Bfl-1/A1. Interestingly, PorB does not induce NF-kappaB activation in HeLa cells, likely due to a lack of Toll-like receptor 2 (TLR2) expression in these cells. Bfl-1/A1 expression is also regulated by CBF1, a nuclear component of the Notch signaling pathway, independent of NF-kappaB activation. Since HeLa cells are protected by PorB from intrinsic apoptosis events, regardless of TLR2 and NF-kappaB expression, the possibility of a contribution of alternative signaling pathways to this effect cannot be excluded. In this paper, we describe an initial dissection of the cascade of cellular events involved in the antiapoptotic effect of PorB in the absence of TLR2.


Assuntos
Apoptose , NF-kappa B/imunologia , Neisseria meningitidis/imunologia , Neisseria meningitidis/patogenicidade , Porinas/fisiologia , Receptor 2 Toll-Like/imunologia , Fatores de Virulência/fisiologia , Células Epiteliais/microbiologia , Células HeLa , Humanos
16.
Front Immunol ; 11: 1254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636846

RESUMO

Vaccines are arguably one of the greatest advancements in modern medicine. Subunit vaccines comprise the majority of current preparations and consist of two main components-antigen and adjuvant. The antigen is a small molecule against which the vaccine induces an immune response to provide protection via the immunostimulatory ability of the adjuvant. Our laboratory has investigated the adjuvant properties of Toll-like receptor (TLR) ligand-based adjuvants, especially the outer membrane protein from Neisseria mengingitidis, PorB. In this current study we used PorB, along with CpG, an intracellular TLR9 agonist, and a non-TLR adjuvant, aluminum salts (Alum), to further investigate cellular mechanisms of adjuvanticity, focusing on the fate of intact antigen in the germinal center and association with follicular dendritic cells (FDCs). FDCs are located in the B cell light zone of the germinal center and are imperative for affinity maturation. They are stromal cells that retain whole intact antigen allowing recognition by the B cell receptor of the germinal center B cells. Our studies demonstrate that TLR ligands, but not Alum, increase the FDC network, while PorB and Alum increased colocalization of FDC and the model soluble antigen, ovalbumin (OVA). As PorB is the only adjuvant tested that induces both a higher number of FDCs and increased deposition of antigen on FDCs, it has the greatest ability to increase FDC-antigen interaction, essential for induction of B cell affinity maturation. These studies demonstrate a further mechanism and potential superiority of PorB as an adjuvant and its influence on antibody production.


Assuntos
Adjuvantes Imunológicos/farmacologia , Células Dendríticas Foliculares/imunologia , Centro Germinativo/imunologia , Porinas/imunologia , Animais , Linfócitos B/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Vacinação , Vacinas/imunologia
17.
Int J Infect Dis ; 99: 28-33, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32721528

RESUMO

OBJECTIVE: The aim of this observational study was to determine the optimal timing of interleukin-6 receptor inhibitor (IL6ri) administration for coronavirus disease 2019 (COVID-19). METHODS: Patients with COVID-19 were given an IL6ri (sarilumab or tocilizumab) based on iteratively reviewed guidelines. IL6ri were initially reserved for critically ill patients, but after review, treatment was liberalized to patients with lower oxygen requirements. Patients were divided into two groups: those requiring ≤45% fraction of inspired oxygen (FiO2) (termed stage IIB) and those requiring >45% FiO2 (termed stage III) at the time of IL6ri administration. The main outcomes were all-cause mortality, discharge alive from hospital, and extubation. RESULTS: A total of 255 COVID-19 patients were treated with IL6ri (149 stage IIB and 106 stage III). Patients treated in stage IIB had lower mortality than those treated in stage III (adjusted hazard ratio (aHR) 0.24, 95% confidence interval (CI) 0.08-0.74). Overall, 218 (85.5%) patients were discharged alive. Patients treated in stage IIB were more likely to be discharged (aHR 1.43, 95% CI 1.06-1.93) and were less likely to be intubated (aHR 0.43, 95% CI 0.24-0.79). CONCLUSIONS: IL6ri administration prior to >45% FiO2 requirement was associated with improved COVID-19 outcomes. This can guide clinical management pending results from randomized controlled trials.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Interleucina-6/antagonistas & inibidores , Pneumonia Viral/tratamento farmacológico , COVID-19 , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/patologia , Feminino , Humanos , Intubação Intratraqueal , Masculino , Pessoa de Meia-Idade , Pandemias , Alta do Paciente , Pneumonia Viral/mortalidade , Pneumonia Viral/patologia , SARS-CoV-2 , Resultado do Tratamento
18.
Hum Vaccin Immunother ; 15(11): 2778-2781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31112447

RESUMO

Our laboratory has focused on Porin B (PorB), an outer membrane protein from Neisseria meningitidis and TLR2 ligand-based adjuvant, to characterize specific molecular and cellular pathways involved in improved immune responses induced by vaccine adjuvants. PorB's ability to form micellar nanoparticular multi-molecular organized structures and its interaction with Toll-like receptor 2/1 complexes likely accounts for its potent adjuvant activity. Downstream from this stimulation, we have observed enhanced antigen uptake in antigen presenting cells (APC), greater antigen deposition in secondary lymphoid organs, and promotion of germinal center reactions. In mice, antigen-specific IgGs were increased after PorB adjuvanted vaccination using the model antigen ovalbumin (OVA). Likewise, this formulation resulted in more IL-4 and IFN-γ positive T cells. Mice that received PorB adjuvanted vaccinations benefitted from lower bacterial burdens when challenged with recombinant Listeria monocytogenes expressing OVA. Mouse models lacking MyD88 signaling in various APC types helped identify macrophages as an essential cell type for the adjuvant activity of PorB. We believe the work presented here provides examples of the mechanistic studies required to understand how vaccine adjuvants are contributing to the establishment of protective immunity.


Assuntos
Adjuvantes Imunológicos , Células Apresentadoras de Antígenos/imunologia , Infecções Meningocócicas/prevenção & controle , Porinas/imunologia , Animais , Animais Geneticamente Modificados , Anticorpos Antibacterianos/sangue , Citocinas/imunologia , Feminino , Imunoglobulina G/sangue , Camundongos , Fator 88 de Diferenciação Mieloide , Neisseria meningitidis , Porinas/administração & dosagem , Linfócitos T/imunologia
19.
Methods Mol Biol ; 1997: 121-141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119622

RESUMO

The emergence and spread of fully antimicrobial resistant Neisseria gonorrhoeae (GC) highlights a clear need for next-generation antigonococcal therapeutics. A broadly reactive anti-GC vaccine would best address this global public health threat. Polyantigenic outer membrane vesicles (OMVs) derived from GC can overcome the challenges posed by GC's high rate of phase and antigen variation. In fact, GC OMVs have already shown promise as a vaccine antigen; however, all previous studies have utilized vesicles contaminated by RMP, a bacterioprotective antigen known to entirely abrogate vaccine-induced bactericidal activity in vivo. Additionally, these studies primarily utilized vesicles isolated through techniques like membrane disruption with detergents, which are known to increase contamination of cytoplasmic components as compared to naturally released OMVs (nOMVs). This chapter describes the isolation and characterization of naturally released nOMVs through sequential size and weight restrictive filtration. nOMVs are characterized by morphology, proteomics, and bioactivity via various methods. Herein we also describe methods for further evaluation of the innate and induced immunogenicity of rmp-deficient GC nOMVs by cell stimulation and murine vaccination. Per these methods, nOMVs are found to be largely homogenous spherical structures approximately 70 nm in diameter containing a consistent subset of GC outer membrane proteins. The rmp-deficient vesicles demonstrate a morphology and, with the exception of RMP, antigenic profile consistent with that of nOMVs derived from wild time N. gonorrhoeae. Additionally, vesicles lacking RMP are able to engage and strongly activate a diverse array of pattern recognition receptors in vitro. These methods lay the groundwork for future experiments examining the in vivo protective efficacy of the anti-GC response induced by these nOMVs as well as studies examining the mechanism of vaccine induced female genital tract immunity.


Assuntos
Antígenos de Bactérias/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Vacinas Bacterianas/imunologia , Neisseria gonorrhoeae/imunologia , Vesículas Secretórias/imunologia , Animais , Antígenos de Bactérias/imunologia , Membrana Externa Bacteriana/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/isolamento & purificação , Vacinas Bacterianas/uso terapêutico , Feminino , Filtração/instrumentação , Filtração/métodos , Gonorreia/imunologia , Gonorreia/microbiologia , Gonorreia/terapia , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Neisseria gonorrhoeae/citologia , Proteômica , Vacinação , Vagina/microbiologia
20.
Infect Immun ; 76(2): 486-96, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18025095

RESUMO

Francisella tularensis can cause severe disseminated disease after respiratory infection. The identification of factors involved in mortality or recovery following induction of tularemia in the mouse will improve our understanding of the natural history of this disease and facilitate future evaluation of vaccine candidate preparations. BALB/c mice were infected intranasally with the live vaccine strain (LVS) of F. tularensis subsp. holarctica and euthanized at different stages of disease to analyze the induction of immune molecules, gross anatomical features of organs, bacterial burdens, and progression of the histopathological changes in lung and spleen. Tissue-specific interleukin-6 (IL-6), macrophage inflammatory protein 2, and monocyte chemotactic protein 1 were immune markers of mortality, while anti-LVS immunoglobulin M and IL-1beta were associated with survival. Moribund mice had enlarged spleens and lungs, while surviving mice had even more prominent splenomegaly and normal-appearing lungs. Histopathology of the spleens of severely ill mice was characterized by disrupted lymphoid follicles and fragmented nuclei, while the spleens of survivors appeared healthy but with increased numbers of megakaryocytes and erythrocytes. Histopathology of the lungs of severely ill mice indicated severe pneumonia. Lungs of survivors at early time points showed increased inflammation, while at late times they appeared healthy with peribronchial lymphoid aggregates. Our results suggest that host immune factors are able to affect bacterial dissemination after respiratory tularemia, provide new insights regarding the pathological characteristics of pulmonary tularemia leading to systemic disease, and potentially identify immune markers associated with recovery from the disease.


Assuntos
Francisella tularensis/imunologia , Pneumonia/imunologia , Pneumonia/patologia , Tularemia/imunologia , Tularemia/patologia , Animais , Anticorpos Antibacterianos/análise , Peso Corporal , Quimiocina CCL2/análise , Quimiocina CXCL2/análise , Contagem de Colônia Microbiana , Feminino , Imunoglobulina M/análise , Interleucina-1beta/análise , Interleucina-6/análise , Pulmão/química , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão , Pneumonia/microbiologia , Baço/química , Baço/microbiologia , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA