Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 16(9): e1008956, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32911491

RESUMO

The genomic diversity of the domestic dog is an invaluable resource for advancing understanding of mammalian biology, evolutionary biology, morphologic variation, and behavior. There are approximately 350 recognized breeds in the world today, many established through hybridization and selection followed by intense breeding programs aimed at retaining or enhancing specific traits. As a result, many breeds suffer from an excess of particular diseases, one of many factors leading to the recent trend of "designer breed" development, i.e. crossing purebred dogs from existing breeds in the hope that offspring will be enriched for desired traits and characteristics of the parental breeds. We used a dense panel of 150,106 SNPs to analyze the population structure of the Australian labradoodle (ALBD), to understand how such breeds are developed. Haplotype and admixture analyses show that breeds other than the poodle (POOD) and Labrador retriever (LAB) contributed to ALBD formation, but that the breed is, at the genetic level, predominantly POOD, with all small and large varieties contributing to its construction. Allele frequency analysis reveals that the breed is enhanced for variants associated with a poodle-like coat, which is perceived by breeders to have an association with hypoallergenicity. We observed little enhancement for LAB-specific alleles. This study provides a blueprint for understanding how dog breeds are formed, highlighting the limited scope of desired traits in defining new breeds.


Assuntos
Animais Domésticos/genética , Cães/genética , Seleção Genética/genética , Alelos , Animais , Austrália , Cruzamento/métodos , Frequência do Gene/genética , Testes Genéticos , Variação Genética , Genômica , Genótipo , Haplótipos , Fenótipo , Filogenia
2.
Mamm Genome ; 33(1): 213-229, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34498136

RESUMO

Although DNA array-based approaches for genome-wide association studies (GWAS) permit the collection of thousands of low-cost genotypes, it is often at the expense of resolution and completeness, as SNP chip technologies are ultimately limited by SNPs chosen during array development. An alternative low-cost approach is low-pass whole genome sequencing (WGS) followed by imputation. Rather than relying on high levels of genotype confidence at a set of select loci, low-pass WGS and imputation rely on the combined information from millions of randomly sampled low-confidence genotypes. To investigate low-pass WGS and imputation in the dog, we assessed accuracy and performance by downsampling 97 high-coverage (> 15×) WGS datasets from 51 different breeds to approximately 1× coverage, simulating low-pass WGS. Using a reference panel of 676 dogs from 91 breeds, genotypes were imputed from the downsampled data and compared to a truth set of genotypes generated from high-coverage WGS. Using our truth set, we optimized a variant quality filtering strategy that retained approximately 80% of 14 M imputed sites and lowered the imputation error rate from 3.0% to 1.5%. Seven million sites remained with a MAF > 5% and an average imputation quality score of 0.95. Finally, we simulated the impact of imputation errors on outcomes for case-control GWAS, where small effect sizes were most impacted and medium-to-large effect sizes were minorly impacted. These analyses provide best practice guidelines for study design and data post-processing of low-pass WGS-imputed genotypes in dogs.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Estudos de Casos e Controles , Cães , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
3.
Hum Mol Genet ; 22(11): 2234-46, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23420014

RESUMO

Development of axons and dendrites constitutes a critical event in neuronal maturation and seems to require signaling through the planar cell polarity (PCP) pathway. Mutations in components of the PCP pathway lead to a spectrum of neurological phenotypes and disorders. For example, a missense mutation in Prickle 1 (Pk1) is associated with progressive myoclonus epilepsy (PME) in humans, and its reduced gene dosage increases sensitivity to induced seizure in mice. In an effort to unravel the role of the PCP pathway in mammalian neuronal development, we examined the expression of Pk1 in the central nervous system (CNS) using in situ hybridization (ISH) in combination with a genetic knock-in approach. We show that Pk1 transcripts are detected in the postmitotic cells of the subplate and cortical plate during mid- and late stages of cortical neurogenesis. In adult brain, Pk1 is expressed in distinct neuronal and glial cell populations, with dynamic formation of dendrites and glial processes during development. Of all the cell types in the mature retina, the highest expression of Pk1 is detected in cholinergic amacrine neurons. Knockdown of Pk1 by shRNA or dominant-negative constructs causes reduced axonal and dendritic extension in hippocampal neurons. Similarly, Pk1 knockdown in neonatal retina leads to defects in inner and outer segments and axon terminals of photoreceptors. Our studies implicate Pk1 function in axonal-dendritic development associated with the maturation of CNS neurons.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Domínio LIM/genética , Morfogênese/genética , Neurogênese/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Dendritos/metabolismo , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Genes Reporter , Hipocampo/metabolismo , Humanos , Proteínas com Domínio LIM/metabolismo , Camundongos , Neurônios/metabolismo , Retina/embriologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
4.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577533

RESUMO

Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell. In this study, we leveraged single nucleus RNA-sequencing (snRNAseq) to examine changes in cell proportions and transcriptomes in four different brain regions, each from 12 donors aged 20-30 years (young) or 60-85 years (old). We sampled 155,192 nuclei from two cortical regions (entorhinal cortex and middle temporal gyrus) and two subcortical regions (putamen and subventricular zone) relevant to neurodegenerative diseases or the proliferative niche. We found no changes in cellular composition of different brain regions with healthy aging. Surprisingly, we did find that each brain region has a distinct aging signature, with only minor overlap in differentially associated genes across regions. Moreover, each cell type shows distinct age-associated expression changes, including loss of protein synthesis genes in cortical inhibitory neurons, axonogenesis genes in excitatory neurons and oligodendrocyte precursor cells, enhanced gliosis markers in astrocytes and disease-associated markers in microglia, and genes critical for neuron-glia communication. Importantly, we find cell type-specific enrichments of age associations with genes nominated by Alzheimer's disease and Parkinson's disease genome-wide association studies (GWAS), such as apolipoprotein E (APOE), and leucine-rich repeat kinase 2 (LRRK2) in microglia that are independent of overall expression levels across cell types. We present this data as a new resource which highlights, first, region- and cell type-specific transcriptomic changes in healthy aging that may contribute to selective vulnerability and, second, provide context for testing GWAS-nominated disease risk genes in relevant subtypes and developing more targeted therapeutic strategies. The data is readily accessible without requirement for extensive computational support in a public website, https://brainexp-hykyffa56a-uc.a.run.app/.

5.
Curr Biol ; 32(4): 889-897.e9, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090588

RESUMO

Domestic dogs (Canis lupus familiaris) are the most variable-sized mammalian species on Earth, displaying a 40-fold size difference between breeds.1 Although dogs of variable size are found in the archeological record,2-4 the most dramatic shifts in body size are the result of selection over the last two centuries, as dog breeders selected and propagated phenotypic extremes within closed breeding populations.5 Analyses of over 200 domestic breeds have identified approximately 20 body size genes regulating insulin processing, fatty acid metabolism, TGFß signaling, and skeletal formation.6-10 Of these, insulin-like growth factor 1 (IGF1) predominates, controlling approximately 15% of body size variation between breeds.8 The identification of a functional mutation associated with IGF1 has thus far proven elusive.6,10,11 Here, to identify and elucidate the role of an ancestral IGF1 allele in the propagation of modern canids, we analyzed 1,431 genome sequences from 13 species, including both ancient and modern canids, thus allowing us to define the evolutionary history of both ancestral and derived alleles at this locus. We identified a single variant in an antisense long non-coding RNA (IGF1-AS) that interacts with the IGF1 gene, creating a duplex. While the derived mutation predominates in both modern gray wolves and large domestic breeds, the ancestral allele, which predisposes to small size, was common in small-sized breeds and smaller wild canids. Our analyses demonstrate that this major regulator of canid body size nearly vanished in Pleistocene wolves, before its recent resurgence resulting from human-imposed selection for small-sized breed dogs.


Assuntos
Canidae , Lobos , Alelos , Animais , Tamanho Corporal/genética , Cruzamento , Canidae/genética , Humanos , Lobos/genética
6.
G3 (Bethesda) ; 10(1): 293-297, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31727632

RESUMO

The breeds of domestic dog, Canis lupus familiaris, display a range of coat types with variation in color, texture, length, curl, and growth pattern. One trait of interest is that of partial or full hairlessness, which is found in a small number of breeds. While the standard for some breeds, such as the Xoloitzcuintli, requires sparse hair on their extremities, others are entirely bald, including the American Hairless Terrier. We identified a small, rare family of Scottish Deerhounds in which coated parents produced a mixed litter of coated and hairless offspring. To identify the underlying variant, we performed whole genome sequencing of the dam and five offspring, comparing single nucleotide polymorphisms and small insertions/deletions against an established catalog of 91 million canine variants. Of 325 homozygous alternative alleles found in both hairless dogs, 56 displayed the expected pattern of segregation and only a single, high impact variant within a coding region was observed: a single base pair insertion in exon two of SGK3 leading to a potential frameshift, thus verifying recently published findings. In addition, we observed that gene expression levels between coated and hairless dogs are similar, suggesting a mechanism other than non-sense mediated decay is responsible for the phenotype.


Assuntos
Pelo Animal/crescimento & desenvolvimento , Cães/genética , Hipotricose/veterinária , Mutação , Proteínas Serina-Treonina Quinases/genética , Animais , Hipotricose/genética , Linhagem , Proteínas Serina-Treonina Quinases/metabolismo , Sequenciamento Completo do Genoma
7.
Genes (Basel) ; 10(5)2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035530

RESUMO

Each domestic dog breed is characterized by a strict set of physical and behavioral characteristics by which breed members are judged and rewarded in conformation shows. One defining feature of particular interest is the coat, which is comprised of either a double- or single-layer of hair. The top coat contains coarse guard hairs and a softer undercoat, similar to that observed in wolves and assumed to be the ancestral state. The undercoat is absent in single-coated breeds which is assumed to be the derived state. We leveraged single nucleotide polymorphism (SNP) array and whole genome sequence (WGS) data to perform genome-wide association studies (GWAS), identifying a locus on chromosome (CFA) 28 which is strongly associated with coat number. Using WGS data, we identified a locus of 18.4 kilobases containing 62 significant variants within the intron of a long noncoding ribonucleic acid (lncRNA) upstream of ADRB1. Multiple lines of evidence highlight the locus as a potential cis-regulatory module. Specifically, two variants are found at high frequency in single-coated dogs and are rare in wolves, and both are predicted to affect transcription factor (TF) binding. This report is among the first to exploit WGS data for both GWAS and variant mapping to identify a breed-defining trait.


Assuntos
Cromossomos/genética , Estudo de Associação Genômica Ampla , Cabelo/crescimento & desenvolvimento , Animais , Cruzamento , Mapeamento Cromossômico , Cães , Regulação da Expressão Gênica/genética , Cabelo/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma , Lobos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA