RESUMO
Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.
Assuntos
Colite/enzimologia , Colo/enzimologia , Citotoxicidade Imunológica , Complexo II de Transporte de Elétrons/metabolismo , Células Epiteliais/enzimologia , Doença Enxerto-Hospedeiro/enzimologia , Mucosa Intestinal/enzimologia , Mitocôndrias/enzimologia , Linfócitos T/imunologia , Animais , Estudos de Casos e Controles , Comunicação Celular , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/ultraestrutura , Modelos Animais de Doenças , Complexo II de Transporte de Elétrons/genética , Células Epiteliais/imunologia , Células Epiteliais/ultraestrutura , Feminino , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/imunologia , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Ácido Succínico/metabolismo , Linfócitos T/metabolismoRESUMO
BACKGROUND: Breast cancer stem cells (BCSCs) are resistant to standard therapies, facilitate tumor dissemination, and contribute to relapse and progression. Super-enhancers are regulators of stemness, and BET proteins, which are critical for super-enhancer function, are a potential therapeutic target. Here, we investigated the effects of BET proteins on the regulation of breast cancer stemness using the pan-BET degrader ZBC260. METHODS: We evaluated the effect of ZBC260 on CSCs in TNBC cell lines. We assessed the effect of ZBC260 on cellular viability and tumor growth and measured its effects on cancer stemness. We used RNA sequencing and stemness index to determine the global transcriptomic changes in CSCs and bulk cells and further validated our findings by qPCR, western blot, and ELISA. RESULTS: ZBC260 potently inhibited TNBC growth both in vitro and in vivo. ZBC260 reduced stemness as measured by cell surface marker expression, ALDH activity, tumorsphere number, and stemness index while increasing differentiated cells. GSEA analysis indicated preferential downregulation of stemness-associated and inflammatory genes by ZBC260 in ALDH+ CSCs. CONCLUSIONS: The BET degrader ZBC260 is an efficient degrader of BET proteins that suppresses tumor progression and decreases CSCs through the downregulation of inflammatory genes and pathways. Our findings support the further development of BET degraders alone and in combination with other therapeutics as CSC targeting agents.
Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Proteínas/metabolismo , Proteínas/farmacologia , Proteínas/uso terapêutico , Transformação Celular Neoplásica/metabolismo , Diferenciação Celular/genética , Células-Tronco Neoplásicas/patologiaRESUMO
Cancer immunotherapies may be limited by their failure to target cancer stem cells (CSCs). We previously described an approach to target these cells using a dendritic cell (DC) vaccine primed with lysates of CSCs identified by aldehyde dehydrogenase (ALDH). However, its clinical application is limited by the difficulty of obtaining adequate amounts of tumor from patient to make CSC lysate for vaccine preparation. To address this issue, we evaluated targeting ALDHhigh CSCs using two antigenic peptides derived from ALDH in D5 melanoma model in both protection and therapeutic settings. ALDH 1A1 or 1A3 peptide-DC vaccines primed cytotoxic T lymphocytes (CTLs) that specifically killed ALDHhigh D5 CSCs, with ALDH 1A1 + 1A3 dual peptides-DC vaccine mediating an additive CTL effect compared to single peptide-DC vaccines. In a tumor challenge model, ALDH peptide-DC vaccines induced significant protective immunity suppressing D5 tumor growth with the dual peptides-DC vaccine being superior to each peptide individually. In a therapeutic model, dual peptide-DC vaccine resulted in significant tumor growth suppression with anti-PD-L1 administration significantly augmenting this effect. Immune monitoring studies revealed that ALDH dual peptides-DC vaccination elicited strong T cell (CTL & IFNγ Elispot) and antibody immunity targeting ALDHhigh CSCs, resulting in significant reduction of ALDHhigh D5 CSCs. ALDH dual peptides-DC vaccination plus anti-PD-L1 administration resulted in increased recruitment of CD3+ TILs in the residual tumors and further reduction of ALDHhigh D5 CSCs. ALDH peptide(s)-based vaccine may allow for clinical translation via immunological targeting of ALDHhigh CSCs. Furthermore, this vaccine augments the efficacy of immune checkpoint blockade.
Assuntos
Vacinas Anticâncer , Melanoma , Células-Tronco Neoplásicas , Aldeído Desidrogenase , Células Dendríticas , Humanos , Melanoma/patologia , PeptídeosRESUMO
The intestine is maintained by stem cells located at the base of crypts and distinguished by the expression of LGR5. Genetically engineered mouse models have provided a wealth of information about intestinal stem cells, whereas less is known about human intestinal stem cells owing to difficulty detecting and isolating these cells. We established an organoid repository from patient-derived adenomas, adenocarcinomas and normal colon, which we analyzed for variants in 71 colorectal cancer (CRC)-associated genes. Normal and neoplastic colon tissue organoids were analyzed by immunohistochemistry and fluorescent-activated cell sorting for LGR5. LGR5-positive cells were isolated from four adenoma organoid lines and were subjected to RNA sequencing. We found that LGR5 expression in the epithelium and stroma was associated with tumor stage, and by integrating functional experiments with LGR5-sorted cell RNA sequencing data from adenoma and normal organoids, we found correlations between LGR5 and CRC-specific genes, including dickkopf WNT signaling pathway inhibitor 4 (DKK4) and SPARC-related modular calcium binding 2 (SMOC2). Collectively, this work provides resources, methods and new markers to isolate and study stem cells in human tissue homeostasis and carcinogenesis.
Assuntos
Adenoma/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenoma/genética , Linhagem Celular Tumoral , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Mucosa Intestinal/citologia , Organoides/metabolismo , Transdução de SinaisRESUMO
PURPOSE: CXCR1, one of the receptors for CXCL8, has been identified as a druggable target on breast cancer cancer stem cells (CSC). Reparixin (R), an investigational oral inhibitor of CXCR1, was safely administered to metastatic breast cancer patients in combination with paclitaxel (P) and appeared to reduce CSC in a window-of-opportunity trial in operable breast cancer. The fRida trial (NCT02370238) evaluated the addition of R to weekly as first-line therapy for metastatic (m) TNBC. SUBJECTS AND METHODS: Subjects with untreated mTNBC were randomized 1:1 to R or placebo days 1-21 in combination with weekly P 80 mg/m2 on days 1, 8, 15 of 28-day cycles. The primary endpoint was PFS by central review. RESULTS: 123 subjects were randomized (62 to R + P and 61 to placebo + P). PFS was not different between the 2 groups (median 5.5 and 5.6 months for R + P and placebo + P, respectively; HR 1.13, p = 0.5996). ALDH+ and CD24-/CD44+ CSC centrally evaluated by IHC were found in 16 and 34 of the 54 subjects who provided a metastatic tissue biopsy at study entry. Serious adverse events (21.3 and 20% of subjects) and grade ≥ 3 adverse reactions (ADR) (9.1 and 6.3% of all ADRs) occurred at similar frequency in both groups. CONCLUSION: fRida is the first randomized, double-blind clinical trial of a CSC-targeting agent in combination with chemotherapy in breast cancer. The primary endpoint of prolonged PFS was not met. CLINICAL TRIAL REGISTRATION/DATE OF REGISTRATION: NCT01861054/February 24, 2015.
Assuntos
Neoplasias de Mama Triplo Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Feminino , Humanos , Paclitaxel/efeitos adversos , Sulfonamidas , Neoplasias de Mama Triplo Negativas/tratamento farmacológicoRESUMO
PURPOSE: Triple-negative breast cancer (TNBC) is an aggressive subtype most prevalent among women of Western Sub-Saharan African ancestry. It accounts for 15-25% of African American (AA) breast cancers (BC) and up to 80% of Ghanaian breast cancers, thus contributing to outcome disparities in BC for black women. The aggressive biology of TNBC has been shown to be regulated partially by breast cancer stem cells (BCSC) which mediate tumor recurrence and metastasis and are more abundant in African breast tumors. METHODS: We studied the biological differences between TNBC in women with African ancestry and those of Caucasian women by comparing the gene expression of the BCSC. From low-passage patient derived xenografts (PDX) from Ghanaian (GH), AA, and Caucasian American (CA) TNBCs, we sorted for and sequenced the stem cell populations and analyzed for differential gene enrichment. RESULTS: In our cohort of TNBC tumors, we observed that the ALDH expressing stem cells display distinct ethnic specific gene expression patterns, with the largest difference existing between the GH and AA ALDH+ cells. Furthermore, the tumors from the women of African ancestry [GH/AA] had ALDH stem cell (SC) enrichment for expression of immune related genes and processes. Among the significantly upregulated genes were CD274 (PD-L1), CXCR9, CXCR10 and IFI27, which could serve as potential drug targets. CONCLUSIONS: Further exploration of the role of immune regulated genes and biological processes in BCSC may offer insight into developing novel approaches to treating TNBC to help ameliorate survival disparities in women with African ancestry.
Assuntos
Neoplasias de Mama Triplo Negativas , Negro ou Afro-Americano/genética , Feminino , Gana/epidemiologia , Humanos , Recidiva Local de Neoplasia , Neoplasias de Mama Triplo Negativas/genética , População BrancaRESUMO
Cancer stem cells (CSCs) proliferate extensively and drive tumor metastasis and recurrence. CSCs have been identified in over 20 cancer types to date, but it remains unknown how to target and eliminate CSCs in vivo. Aldehyde dehydrogenase (ALDH) is a marker that has been used extensively for isolating CSCs. Here we present a novel approach to target and reduce the frequency of ALDHhigh CSCs by vaccination against ALDH. We have identified ALDH1-A1 and ALDH1-A3 epitopes from CSCs and developed synthetic high-density lipoprotein nanodiscs for vaccination against ALDHhigh CSCs. Nanodiscs increased antigen trafficking to lymph nodes and generated robust ALDH-specific T cell responses. Nanodisc vaccination against ALDHhigh CSCs combined with anti-PD-L1 therapy exerted potent antitumor efficacy and prolonged animal survival in multiple murine models. Overall, this is the first demonstration of a simple nanovaccine strategy against CSCs and may lead to new avenues for cancer immunotherapy against CSCs.
Assuntos
Neoplasias , Vacinas , Aldeído Desidrogenase , Família Aldeído Desidrogenase 1 , Animais , Linhagem Celular Tumoral , Imunoterapia , Camundongos , Neoplasias/terapia , Células-Tronco NeoplásicasRESUMO
BACKGROUND & AIMS: Liquid biopsies, or blood samples, can be analyzed to detect circulating tumor cells (CTCs), cell-free DNA (cfDNA), and extracellular vesicles, which might identify patients with hepatocellular carcinoma (HCC) or help determine their prognoses. We performed a systematic review of studies of analyses of liquid biopsies from patients with HCC and their comparisons with other biomarkers. METHODS: We performed a systematic review of original studies published before December 1, 2019. We included studies that compared liquid biopsies alone and in combination with other biomarkers for the detection of HCC, performed multivariate analyses of the accuracy of liquid biopsy analysis in determining patient prognoses, or evaluated the utility of liquid biopsy analysis in monitoring treatment response. RESULTS: Our final analysis included 112 studies: 67 on detection, 46 on determining prognosis, and 25 on treatment monitoring or selection. Ten studies evaluated assays that characterized cfDNA for detection of HCC in combination with measurement of α-fetoprotein (AFP)-these studies found that the combined measurement of cfDNA and AFP more accurately identified patients with HCC than measurement of AFP alone. Six studies evaluated assays for extracellular vesicles and 2 studies evaluated assays for CTC in detection of HCC, with and without other biomarkers-most of these studies found that detection of CTCs or extracellular vesicles with AFP more accurately identified patients with HCC than measurement of AFP alone. Detection of CTCs before surgery was associated with HCC recurrence after resection in 13 of 14 studies; cfDNA and extracellular vesicles have been studied less frequently as prognostic factors. Changes in CTC numbers before vs after treatment more accurately identify patients with HCC recurrence than pretreatment counts alone, and measurements of cfDNA can identify patients with disease recurrence or progression before changes can be detected by imaging. We found little evidence that analyses of liquid biopsies can aid in the selection of treatment for HCC. Quality assessment showed risk of bias in studies of HCC detection and determination of prognosis. CONCLUSIONS: In a systematic review of 112 studies of the accuracy of liquid biopsy analysis, we found that assays for CTCs and cfDNA might aid in determining patient prognoses and monitoring HCC, and assays for cfDNA might aid in HCC detection, but there is a risk of bias in these studies. Studies must be standardized before we can assess the clinical utility of liquid biopsy analysis in the detection and management of patients with HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Humanos , Biópsia Líquida , Neoplasias Hepáticas/diagnóstico , Recidiva Local de Neoplasia , Prognóstico , alfa-FetoproteínasRESUMO
Although inactivation of the PTEN gene has been implicated in the development of resistance to the HER2 targeting antibody trastuzumab, the mechanisms mediating this resistance remain elusive. We generated trastuzumab resistant cells by knocking down PTEN expression in HER2 overexpressing breast cancer cell lines and demonstrate that development of trastuzumab resistance in these cells is mediated by activation of an IL6 inflammatory feedback loop leading to expansion of the cancer stem cell (CSC) population. Long term trastuzumab treatment generates highly enriched CSCs which display an EMT phenotype secreting over 100-fold more IL6 than parental cells. An IL6 receptor antibody interrupted this inflammatory feedback loop reducing the cancer stem cell population resulting in decreased tumor growth and metastasis in mouse xenographs. These studies demonstrate that trastuzumab resistance may be mediated by an IL6 inflammatory loop and suggest that blocking this loop may provide alternative strategy to overcome trastuzumab resistance.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor ErbB-2/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Interleucina-6/genética , Interleucina-8/genética , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Receptor ErbB-2/genética , TrastuzumabRESUMO
The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes.
Assuntos
Algoritmos , Reprogramação Celular/genética , Biologia Computacional/métodos , Fibroblastos/citologia , Fatores de Transcrição/genética , Sítios de Ligação/genética , Ciclo Celular/genética , Diferenciação Celular , Células Cultivadas , Reprogramação Celular/fisiologia , Perfilação da Expressão Gênica , Genoma Humano/genética , Humanos , Modelos GenéticosRESUMO
Considerable evidence suggests breast cancer metastasis arises from cells undergoing epithelial-to-mesenchymal-transition (EMT) and cancer stem-like cells (CSCs). Using a microfluidic device that enriches migratory breast cancer cells with enhanced capacity for tumor formation and metastasis, we identified genes differentially expressed in migratory cells by high-throughput single-cell RNA-sequencing. Migratory cells exhibited overall signatures of EMT and CSCs with variable expression of marker genes, and they retained expression profiles of EMT over time. With single-cell resolution, we discovered intermediate EMT states and distinct epithelial and mesenchymal sub-populations of migratory cells, indicating breast cancer cells can migrate rapidly while retaining an epithelial state. Migratory cells showed differential profiles for regulators of oxidative stress, mitochondrial morphology, and the proteasome, revealing potential vulnerabilities and unexpected consequences of drugs. We also identified novel genes correlated with cell migration and outcomes in breast cancer as potential prognostic biomarkers and therapeutic targets to block migratory cells in metastasis.
Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Genes Neoplásicos , Metástase Neoplásica/genética , RNA/análise , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Células-Tronco Neoplásicas/química , Análise de Célula Única/métodos , TranscriptomaRESUMO
It is now widely believed that mammary epithelial cell plasticity, an important physiological process during the stages of mammary gland development, is exploited by the malignant cells for their successful disease progression. Normal mammary epithelial cells are heterogeneous and organized in hierarchical fashion, in which the mammary stem cells (MaSC) lie at the apex with regenerative capacity as well as plasticity. Despite the fact that the majority of studies supported the existence of multipotent MaSCs giving rise to both basal and luminal lineages, others proposed lineage restricted unipotent MaSCs. Consistent with the notion, the latest research has suggested that although normal MaSC subsets mainly stay in a quiescent state, they differ in their reconstituting ability, spatial localization, and molecular and epigenetic signatures in response to physiological stimuli within the respective microenvironment during the stages of mammary gland development. In this review, we will focus on current research on the biology of normal mammary stem cells with an emphasis on properties of cellular plasticity, self-renewal and quiescence, as well as the role of the microenvironment in regulating these processes. This will include a discussion of normal breast stem cell heterogeneity, stem cell markers, and lineage tracing studies.
Assuntos
Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Feminino , HumanosRESUMO
Breast cancer stem cells (BCSCs) are thought to be responsible for tumor initiation, metastasis and relapse. Our group and others have described markers useful in isolating BCSCs just as aldehyde dehydrogenase positive (ALDH+) or CD24-CD44+. In fact, cells which simultaneously express both sets of markers have the highest tumor initiating capacity. Although the transcriptomic profile of cells expressing each BCSC marker alone has been reported, the profile of the most tumorigenic population expressing both sets of markers has not. Here we used the biomarker combination of ALDH and CD24/CD44 to sort four populations isolated from triple-negative breast cancer (TNBC) patient-derived xenografts, and performed whole-transcriptome sequencing on each population. We systematically compared the profiles of the three states of BCSCs (ALDH+CD24-CD44+, ALDH+non-CD24-CD44+ and ALDH-CD24-CD44+) to that of the differentiated tumor cells (ALDH-non-CD24-CD44+). For the first time, we compared the ALDH+CD24-CD44+ BCSCs with the other two BCSC populations. In ALDH+CD24-CD44+ BCSCs, we identified P4HA2, PTGR1 and RAB40B as potential prognostic markers, which were virtually related to the status of BCSCs and tumor growth in TNBC cells.
Assuntos
Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Gradação de Tumores , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/patologia , Prognóstico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidadeRESUMO
Cancers are initiated and developed from a small population of stem-like cells termed cancer stem cells (CSCs). There is heterogeneity among this CSC population that leads to multiple subpopulations with their own distinct biological features and protein expression. The protein expression and function may be impacted by amino acid variants that can occur largely due to single nucleotide changes. We have thus performed proteomic analysis of breast CSC subpopulations by mass spectrometry to study the presence of single amino acid variants (SAAVs) and their relation to breast cancer. We have used CSC markers to isolate pure breast CSC subpopulation fractions (ALDH+ and CD44+/CD24- cell populations) and the mature luminal cells (CD49f-EpCAM+) from the MCF-7 breast cancer cell line. By searching the Swiss-CanSAAVs database, 374 unique SAAVs were identified in total, where 27 are cancer-related SAAVs. 135 unique SAAVs were found in the CSC population compared with the mature luminal cells. The distribution of SAAVs detected in MCF-7 cells was compared with those predicted from the Swiss-CanSAAVs database, where we found distinct differences in the numbers of SAAVs detected relative to that expected from the Swiss-CanSAAVs database for several of the amino acids.
Assuntos
Aldeído Desidrogenase/genética , Substituição de Aminoácidos , Biomarcadores Tumorais/genética , Antígeno CD24/genética , Receptores de Hialuronatos/genética , Células-Tronco Neoplásicas/metabolismo , Aldeído Desidrogenase/metabolismo , Sequência de Aminoácidos , Biomarcadores Tumorais/metabolismo , Antígeno CD24/metabolismo , Separação Celular , Bases de Dados de Proteínas , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Expressão Gênica , Ontologia Genética , Humanos , Receptores de Hialuronatos/metabolismo , Integrina alfa6/genética , Integrina alfa6/metabolismo , Células MCF-7 , Células-Tronco Neoplásicas/patologia , Mapeamento de Interação de ProteínasRESUMO
Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.
Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Animais , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Pesquisa Translacional BiomédicaRESUMO
Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC.
Assuntos
Carcinoma de Células Renais/terapia , Células Dendríticas/transplante , Endoglina/imunologia , Imunoterapia/métodos , Neoplasias Renais/terapia , Células-Tronco Neoplásicas/imunologia , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Células Cultivadas , Células Dendríticas/imunologia , Endoglina/análise , Feminino , Humanos , Rim/imunologia , Rim/patologia , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/patologia , Linfócitos T/imunologia , Linfócitos T/patologiaRESUMO
Substantial evidence has clearly demonstrated the role of the IL-6-NF-κB signaling loop in promoting aggressive phenotypes in breast cancer. However, the exact mechanism by which this inflammatory loop is regulated remains to be defined. Here, we report that integrin-linked kinase (ILK) acts as a molecular switch for this feedback loop. Specifically, we show that IL-6 induces ILK expression via E2F1 upregulation, which, in turn, activates NF-κB signaling to facilitate IL-6 production. shRNA-mediated knockdown or pharmacological inhibition of ILK disrupted this IL-6-NF-κB signaling loop, and blocked IL-6-induced cancer stem cells in vitro and estrogen-independent tumor growth in vivo Together, these findings establish ILK as an intermediary effector of the IL-6-NF-κB feedback loop and a promising therapeutic target for breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais , HumanosRESUMO
Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal, while remaining non-toxic to normal differentiated cells. We paired fluorescence-activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH-/CD44+/CD24-) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24- cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self-renewal. These results elucidate the mechanisms by which curcumin may act as a cancer-preventive compound and provide novel targets for cancer prevention and treatment.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Curcumina/farmacologia , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Estearoil-CoA Dessaturase/genética , Alcaloides/farmacologia , Benzodioxóis/farmacologia , Neoplasias da Mama/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismoRESUMO
Prior to availability of anti-HER2 therapies, HER2-positive metastatic breast cancer (MBC) was associated with a poor prognosis. Prospective randomized trials have demonstrated survival benefit from anti-HER2 treatments. Anecdotal observations have suggested that a small but meaningful fraction of patients with HER2-positive MBC may be "exceptional responders" with long survival. We hypothesized that demographic and/or clinicopathologic characteristics can be identified to distinguish short-term from long-term survivors. A retrospective, single-institution review of 168 patients with HER2-positive MBC who received treatment with anti-HER2 therapy in the metastatic setting was performed. Cox proportional hazards analysis was used to assess factors associated with long-term survival. Median overall survival from the time of breast cancer recurrence was 3.9 years (95 % CI 3.4-5.2). From the time of diagnosis of MBC, 56 (33 %) survived for 5 or more years and 12 (7 %) survived more than 10 years. Of the 66 patients diagnosed with central nervous system metastases, 9 (14 %) survived more than 5 years following that diagnosis. Younger age at diagnosis, lower stage, hormone receptor positive status, and only having one organ involved at diagnosis were associated with longer survival. Four patients discontinued anti-HER2 therapy and are without evidence of progression of disease after a median 7.4 years (0.2-12.0) since stopping therapy. In a cohort of patients with HER2-positive MBC treated primarily with trastuzumab and lapatinib, 7 % of patients were "exceptional responders." Combining these clinical factors with molecular determinants of prolonged survival may provide insights for individualizing treatment selection.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Prognóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Feminino , Humanos , Lapatinib , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Modelos de Riscos Proporcionais , Quinazolinas/administração & dosagem , Receptor ErbB-2/genética , Trastuzumab/administração & dosagemRESUMO
Cancer stem cells (CSCs) represent a small subset of tumor cells which have the ability to self-renew and generate the diverse cells that comprise the tumor bulk. They are responsible for local tumor recurrence and distant metastasis. However, they are resistant to conventional radiotherapy and chemotherapy. Novel immunotherapeutic strategies that specifically target CSCs may improve the efficacy of cancer therapy. To immunologically target CSC phenotypes, innate immune responses to CSCs have been reported using Natural killer cells and γδ T cells. To target CSC specifically, in vitro CSC-primed T cells have been successfully generated and shown targeting of CSCs in vivo after adoptive transfer. Recently, CSC-based dendritic cell vaccine has demonstrated significant induction of anti-CSC immunity both in vivo in immunocompetent hosts and in vitro as evident by CSC reactivity of CSC vaccine-primed antibodies and T cells. In addition, identification of specific antigens or genetic alterations in CSCs may provide more specific targets for immunotherapy. ALDH, CD44, CD133, and HER2 have served as markers to isolate CSCs from a number of tumor types in animal models and human tumors. They might serve as useful targets for CSC immunotherapy. Finally, since CSCs are regulated by interactions with the CSC niche, these interactions may serve as additional targets for CSC immunotherapy. Targeting the tumor microenvironment, such as interrupting the immune cell, for example, myeloid-derived suppressor cells, and cytokines, for example, IL-6 and IL-8, as well as the immune checkpoint (PD1/PDL1, etc.) may provide additional novel strategies to enhance the immunological targeting of CSCs.