Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 291(45): 23589-23603, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621316

RESUMO

DNA-protein cross-links (DPCs) are bulky DNA lesions that form both endogenously and following exposure to bis-electrophiles such as common antitumor agents. The structural and biological consequences of DPCs have not been fully elucidated due to the complexity of these adducts. The most common site of DPC formation in DNA following treatment with bis-electrophiles such as nitrogen mustards and cisplatin is the N7 position of guanine, but the resulting conjugates are hydrolytically labile and thus are not suitable for structural and biological studies. In this report, hydrolytically stable structural mimics of N7-guanine-conjugated DPCs were generated by reductive amination reactions between the Lys and Arg side chains of proteins/peptides and aldehyde groups linked to 7-deazaguanine residues in DNA. These model DPCs were subjected to in vitro replication in the presence of human translesion synthesis DNA polymerases. DPCs containing full-length proteins (11-28 kDa) or a 23-mer peptide blocked human polymerases η and κ. DPC conjugates to a 10-mer peptide were bypassed with nucleotide insertion efficiency 50-100-fold lower than for native G. Both human polymerase (hPol) κ and hPol η inserted the correct base (C) opposite the 10-mer peptide cross-link, although small amounts of T were added by hPol η. Molecular dynamics simulation of an hPol κ ternary complex containing a template-primer DNA with dCTP opposite the 10-mer peptide DPC revealed that this bulky lesion can be accommodated in the polymerase active site by aligning with the major groove of the adducted DNA within the ternary complex of polymerase and dCTP.


Assuntos
Adutos de DNA/química , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/análogos & derivados , Peptídeos/química , Proteínas/química , Aminação , Sequência de Aminoácidos , Sequência de Bases , Adutos de DNA/genética , Guanina/química , Humanos , Simulação de Dinâmica Molecular , Oxirredução , Proteínas Recombinantes/metabolismo
2.
Int J Mol Sci ; 18(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28524082

RESUMO

Xenobiotic-induced interstrand DNA-DNA cross-links (ICL) interfere with transcription and replication and can be converted to toxic DNA double strand breaks. In this work, we investigated cellular responses to 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) cross-links induced by 1,2,3,4-diepoxybutane (DEB). High pressure liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI⁺-MS/MS) assays were used to quantify the formation and repair of bis-N7G-BD cross-links in wild-type Chinese hamster lung fibroblasts (V79) and the corresponding isogenic clones V-H1 and V-H4, deficient in the XPD and FANCA genes, respectively. Both V-H1 and V-H4 cells exhibited enhanced sensitivity to DEB-induced cell death and elevated bis-N7G-BD cross-links. However, relatively modest increases of bis-N7G-BD adduct levels in V-H4 clones did not correlate with their hypersensitivity to DEB. Further, bis-N7G-BD levels were not elevated in DEB-treated human clones with defects in the XPA or FANCD2 genes. Comet assays and γ-H2AX focus analyses conducted with hamster cells revealed that ICL removal was associated with chromosomal double strand break formation, and that these breaks persisted in V-H4 cells as compared to control cells. Our findings suggest that ICL repair in cells with defects in the Fanconi anemia repair pathway is associated with aberrant re-joining of repair-induced double strand breaks, potentially resulting in lethal chromosome rearrangements.


Assuntos
Reparo do DNA/genética , Compostos de Epóxi/farmacologia , Animais , Linhagem Celular , Cricetinae , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética
3.
Biochemistry ; 55(43): 6070-6081, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27552084

RESUMO

The important industrial and environmental carcinogen 1,3-butadiene (BD) forms a range of adenine adducts in DNA, including N6-(2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine (N6-HB-dA), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N6-HMHP-dA), and N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (N6,N6-DHB-dA). If not removed prior to DNA replication, these lesions can contribute to A → T and A → G mutations commonly observed following exposure to BD and its metabolites. In this study, base excision repair of BD-induced 2'-deoxyadenosine (BD-dA) lesions was investigated. Synthetic DNA duplexes containing site-specific and stereospecific (S)-N6-HB-dA, (R,S)-1,N6-HMHP-dA, and (R,R)-N6,N6-DHB-dA adducts were prepared by a postoligomerization strategy. Incision assays with nuclear extracts from human fibrosarcoma (HT1080) cells have revealed that BD-dA adducts were recognized and cleaved by a BER mechanism, with the relative excision efficiency decreasing in the following order: (S)-N6-HB-dA > (R,R)-N6,N6-DHB-dA > (R,S)-1,N6-HMHP-dA. The extent of strand cleavage at the adduct site was decreased in the presence of BER inhibitor methoxyamine and by competitor duplexes containing known BER substrates. Similar strand cleavage assays conducted using several eukaryotic DNA glycosylases/lyases (AAG, Mutyh, hNEIL1, and hOGG1) have failed to observe correct incision products at the BD-dA lesion sites, suggesting that a different BER enzyme may be involved in the removal of BD-dA adducts in human cells.


Assuntos
Butadienos/química , Reparo do DNA , Desoxiadenosinas/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos
4.
J Biol Chem ; 290(2): 775-87, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25391658

RESUMO

DNA-protein cross-links (DPCs) are exceptionally bulky, structurally diverse DNA adducts formed in cells upon exposure to endogenous and exogenous bis-electrophiles, reactive oxygen species, and ionizing radiation. If not repaired, DPCs can induce toxicity and mutations. It has been proposed that the protein component of a DPC is proteolytically degraded, giving rise to smaller DNA-peptide conjugates, which can be subject to nucleotide excision repair and replication bypass. In this study, polymerase bypass of model DNA-peptide conjugates structurally analogous to the lesions induced by reactive oxygen species and DNA methyltransferase inhibitors was examined. DNA oligomers containing site-specific DNA-peptide conjugates were generated by copper-catalyzed [3 + 2] Huisgen cyclo-addition between an alkyne-functionalized C5-thymidine in DNA and an azide-containing 10-mer peptide. The resulting DNA-peptide conjugates were subjected to steady-state kinetic experiments in the presence of recombinant human lesion bypass polymerases κ and η, followed by PAGE-based assays to determine the catalytic efficiency and the misinsertion frequency opposite the lesion. We found that human polymerase κ and η can incorporate A, G, C, or T opposite the C5-dT-conjugated DNA-peptide conjugates, whereas human polymerase η preferentially inserts G opposite the lesion. Furthermore, HPLC-ESI(-)-MS/MS sequencing of the extension products has revealed that post-lesion synthesis was highly error-prone, resulting in mutations opposite the adducted site or at the +1 position from the adduct and multiple deletions. Collectively, our results indicate that replication bypass of peptides conjugated to the C5 position of thymine by human translesion synthesis polymerases leads to large numbers of base substitution and frameshift mutations.


Assuntos
Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias/metabolismo , Peptídeos/genética , Timidina/genética , Química Click , Adutos de DNA/química , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA , Humanos , Cinética , Neoplasias/patologia , Peptídeos/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Timidina/química
5.
Chem Res Toxicol ; 28(7): 1496-507, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26098310

RESUMO

N(6)-(2-Hydroxy-3-buten-1-yl)-2'-deoxyadenosine (N(6)-HB-dA I) and N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (N(6),N(6)-DHB-dA) are exocyclic DNA adducts formed upon alkylation of the N(6) position of adenine in DNA by epoxide metabolites of 1,3-butadiene (BD), a common industrial and environmental chemical classified as a human and animal carcinogen. Since the N(6)-H atom of adenine is required for Watson-Crick hydrogen bonding with thymine, N(6)-alkylation can prevent adenine from normal pairing with thymine, potentially compromising the accuracy of DNA replication. To evaluate the ability of BD-derived N(6)-alkyladenine lesions to induce mutations, synthetic oligodeoxynucleotides containing site-specific (S)-N(6)-HB-dA I and (R,R)-N(6),N(6)-DHB-dA adducts were subjected to in vitro translesion synthesis in the presence of human DNA polymerases ß, η, ι, and κ. While (S)-N(6)-HB-dA I was readily bypassed by all four enzymes, only polymerases η and κ were able to carry out DNA synthesis past (R,R)-N(6),N(6)-DHB-dA. Steady-state kinetic analyses indicated that all four DNA polymerases preferentially incorporated the correct base (T) opposite (S)-N(6)-HB-dA I. In contrast, hPol ß was completely blocked by (R,R)-N(6),N(6)-DHB-dA, while hPol η and κ inserted A, G, C, or T opposite the adduct with similar frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed that while translesion synthesis past (S)-N(6)-HB-dA I was mostly error-free, replication of DNA containing (R,R)-N(6),N(6)-DHB-dA induced significant numbers of A, C, and G insertions and small deletions. These results indicate that singly substituted (S)-N(6)-HB-dA I lesions are not miscoding, but that exocyclic (R,R)-N(6),N(6)-DHB-dA adducts are strongly mispairing, probably due to their inability to form stable Watson-Crick pairs with dT.


Assuntos
Butadienos/metabolismo , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiadenosinas/metabolismo , Butadienos/química , Cromatografia Líquida de Alta Pressão , DNA/análise , DNA/metabolismo , Adutos de DNA/química , Primers do DNA/metabolismo , Replicação do DNA , Desoxiadenosinas/química , Compostos de Epóxi/química , Humanos , Cinética , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray
6.
Chembiochem ; 15(3): 353-5, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24436288

RESUMO

Easier with ethyl: Guengerich and co-workers have developed a powerful new approach to the structure elucidation of hydrolytically stable AGT-DNA crosslinks by reductive desulfurization of the thioether linkage between AGT and DNA to convert cysteine DPCs to the corresponding ethyl-DNA adducts, which can be readily characterized by LC-MSn.


Assuntos
Adutos de DNA/química , DNA/química , O(6)-Metilguanina-DNA Metiltransferase/química , Enxofre/química , Cromatografia Líquida de Alta Pressão , Cisteína/química , DNA/metabolismo , Guanina/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Oxirredução , Espectrometria de Massas por Ionização por Electrospray
7.
Chem Res Toxicol ; 27(10): 1675-86, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25238403

RESUMO

1,3-Butadiene (BD) is an environmental and occupational toxicant classified as a human carcinogen. It is oxidized by cytochrome P450 monooxygenases to 1,2-epoxy-3-butene (EB), which alkylates DNA. BD exposures lead to large numbers of mutations at A:T base pairs even though alkylation of guanines is more prevalent, suggesting that one or more adenine adducts of BD play a role in BD-mediated genotoxicity. However, the etiology of BD-mediated genotoxicity at adenine remains poorly understood. EB alkylates the N(6) exocyclic nitrogen of adenine to form N(6)-(hydroxy-3-buten-1-yl)-2'-dA ((2S)-N(6)-HB-dA) adducts ( Tretyakova , N. , Lin , Y. , Sangaiah , R. , Upton , P. B. , and Swenberg , J. A. ( 1997 ) Carcinogenesis 18 , 137 - 147 ). The structure of the (2S)-N(6)-HB-dA adduct has been determined in the 5'-d(C(1)G(2)G(3)A(4)C(5)Y(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19) C(20)C(21)G(22))-3' duplex [Y = (2S)-N(6)-HB-dA] containing codon 61 (underlined) of the human N-ras protooncogene, from NMR spectroscopy. The (2S)-N(6)-HB-dA adduct was positioned in the major groove, such that the butadiene moiety was oriented in the 3' direction. At the Cα carbon, the methylene protons of the modified nucleobase Y(6) faced the 5' direction, which placed the Cß carbon in the 3' direction. The Cß hydroxyl group faced toward the solvent, as did carbons Cγ and Cδ. The Cß hydroxyl group did not form hydrogen bonds with either T(16) O(4) or T(17) O(4). The (2S)-N(6)-HB-dA nucleoside maintained the anti conformation about the glycosyl bond, and the modified base retained Watson-Crick base pairing with the complementary base (T(17)). The adduct perturbed stacking interactions at base pairs C(5):G(18), Y(6):T(17), and A(7):T(16) such that the Y(6) base did not stack with its 5' neighbor C(5), but it did with its 3' neighbor A(7). The complementary thymine T(17) stacked well with both 5' and 3' neighbors T(16) and G(18). The presence of the (2S)-N(6)-HB-dA resulted in a 5 °C reduction in the Tm of the duplex, which is attributed to less favorable stacking interactions and adduct accommodation in the major groove.


Assuntos
Butadienos/química , Adutos de DNA/química , DNA/química , Desoxiadenosinas/química , Compostos de Epóxi/química , Alquilação , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Estereoisomerismo , Temperatura de Transição , Proteínas ras/genética
8.
Chem Res Toxicol ; 27(5): 805-17, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24741991

RESUMO

1,3-Butadiene (BD) is an industrial and environmental chemical present in urban air and cigarette smoke, and is classified as a human carcinogen. It is oxidized by cytochrome P450 to form 1,2,3,4-diepoxybutane (DEB); DEB bis-alkylates the N(6) position of adenine in DNA. Two enantiomers of bis-N(6)-dA adducts of DEB have been identified: R,R-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (R,R-DHB-dA), and S,S-N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (S,S-DHB-dA) [ Seneviratne , U. , Antsypovich , S. , Dorr , D. Q. , Dissanayake , T. , Kotapati , S. , and Tretyakova , N. ( 2010 ) Chem. Res. Toxicol. 23 , 1556 -1567 ]. Herein, the R,R-DHB-dA and S,S-DHB-dA adducts have been incorporated into the 5'-d(C(1)G(2)G(3)A(4)C(5)X(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19)C(20)C(21)G(22))-3' duplex [X(6) = R,R-DHB-dA (R(6)) or S,S-DHB-dA (S(6))]. The structures of the duplexes were determined by molecular dynamics calculations, which were restrained by experimental distances obtained from NMR data. Both the R,R- and S,S-DHB-dA adducts are positioned in the major groove of DNA. In both instances, the bulky 3,4-dihydroxypyrrolidine rings are accommodated by an out-of-plane rotation about the C6-N(6) bond of the bis-alkylated adenine. In both instances, the directionality of the dihydroxypyrrolidine ring is evidenced by the pattern of NOEs between the 3,4-dihydroxypyrrolidine protons and DNA. Also in both instances, the anti conformation of the glycosyl bond is maintained, which combined with the out-of-plane rotation about the C6-N(6) bond, allows the complementary thymine, T(17), to remain stacked within the duplex, and form one hydrogen bond with the modified base, between the imine nitrogen of the modified base and the T(17) N3H imino proton. The loss of the second Watson-Crick hydrogen bonding interaction at the lesion sites correlates with the lower thermal stabilities of the R,R- and S,S-DHB-dA duplexes, as compared to the corresponding unmodified duplex. The reduced base stacking at the adduct sites may also contribute to the thermal instability.


Assuntos
Poluentes Atmosféricos/toxicidade , Carcinógenos/toxicidade , Adutos de DNA/metabolismo , Desoxiadenosinas/metabolismo , Compostos de Epóxi/toxicidade , Poluentes Atmosféricos/metabolismo , Sequência de Bases , Carcinógenos/metabolismo , Adutos de DNA/química , Desoxiadenosinas/química , Compostos de Epóxi/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/análise
9.
Biochemistry ; 52(18): 3171-81, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23566219

RESUMO

Although cytotoxic alkylating agents possessing two electrophilic reactive groups are thought to act by cross-linking cellular biomolecules, their exact mechanisms of action have not been established. In cells, these compounds form a mixture of DNA lesions, including nucleobase monoadducts, interstrand and intrastrand cross-links, and DNA-protein cross-links (DPCs). Interstrand DNA-DNA cross-links block replication and transcription by preventing DNA strand separation, contributing to toxicity and mutagenesis. In contrast, potential contributions of drug-induced DPCs are poorly understood. To gain insight into the biological consequences of DPC formation, we generated DNA-reactive protein reagents and examined their toxicity and mutagenesis in mammalian cells. Recombinant human O(6)-alkylguanine DNA alkyltransferase (AGT) protein or its variants (C145A and K125L) were treated with 1,2,3,4-diepoxybutane to yield proteins containing 2-hydroxy-3,4-epoxybutyl groups on cysteine residues. Gel shift and mass spectrometry experiments confirmed that epoxide-functionalized AGT proteins formed covalent DPC but no other types of nucleobase damage when incubated with duplex DNA. Introduction of purified AGT monoepoxides into mammalian cells via electroporation generated AGT-DNA cross-links and induced cell death and mutations at the hypoxanthine-guanine phosphoribosyltransferase gene. Smaller numbers of DPC lesions and reduced levels of cell death were observed when using protein monoepoxides generated from an AGT variant that fails to accumulate in the cell nucleus (K125L), suggesting that nuclear DNA damage is required for toxicity. Taken together, these results indicate that AGT protein monoepoxides produce cytotoxic and mutagenic DPC lesions within chromosomal DNA. More generally, these data suggest that covalent DPC lesions contribute to the cytotoxic and mutagenic effects of bis-electrophiles.


Assuntos
Morte Celular , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Compostos de Epóxi/farmacologia , Mutagênese , Alquilação , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray
10.
J Biol Chem ; 287(46): 38800-11, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22977231

RESUMO

The 1,N(6)-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N(6)-γ-HMHP-dA) adducts are formed upon bifunctional alkylation of adenine nucleobases in DNA by 1,2,3,4-diepoxybutane, the putative ultimate carcinogenic metabolite of 1,3-butadiene. The presence of a substituted 1,N(6)-propano group on 1,N(6)-γ-HMHP-dA is expected to block the Watson-Crick base pairing of the adducted adenine with thymine, potentially contributing to mutagenesis. In this study, the enzymology of replication past site-specific 1,N(6)-γ-HMHP-dA lesions in the presence of human DNA polymerases (hpols) ß, η, κ, and ι and archebacterial polymerase Dpo4 was investigated. Run-on gel analysis with all four dNTPs revealed that hpol η, κ, and Dpo4 were able to copy the modified template. In contrast, hpol ι inserted a single base opposite 1,N(6)-γ-HMHP-dA but was unable to extend beyond the damaged site, and a complete replication block was observed with hpol ß. Single nucleotide incorporation experiments indicated that although hpol η, κ, and Dpo4 incorporated the correct nucleotide (dTMP) opposite the lesion, dGMP and dAMP were inserted with a comparable frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed the ability of bypass polymerases to insert dTMP, dAMP, or dGMP opposite 1,N(6)-γ-HMHP-dA and detected large amounts of -1 and -2 deletion products. Taken together, these results indicate that hpol η and κ enzymes bypass 1,N(6)-γ-HMHP-dA lesions in an error-prone fashion, potentially contributing to A→T and A→C transversions and frameshift mutations observed in cells following treatment with 1,2,3,4-diepoxybutane.


Assuntos
Archaea/enzimologia , DNA Polimerase Dirigida por DNA/química , Desoxiadenosinas/farmacologia , Archaea/genética , Sequência de Bases , Adutos de DNA , Dano ao DNA , Reparo do DNA , Replicação do DNA , Deleção de Genes , Humanos , Cinética , Espectrometria de Massas/métodos , Modelos Químicos , Dados de Sequência Molecular , Oligonucleotídeos/química , Proteínas Recombinantes/química , Análise de Sequência de DNA , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
11.
Bioconjug Chem ; 24(9): 1496-506, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23885807

RESUMO

DNA-protein cross-links (DPCs) are ubiquitous, structurally diverse DNA lesions formed upon exposure to bis-electrophiles, transition metals, UV light, and reactive oxygen species. Because of their superbulky, helix distorting nature, DPCs interfere with DNA replication, transcription, and repair, potentially contributing to mutagenesis and carcinogenesis. However, the biological implications of DPC lesions have not been fully elucidated due to the difficulty in generating site-specific DNA substrates representative of DPC lesions formed in vivo. In the present study, a novel approach involving postsynthetic reductive amination has been developed to prepare a range of hydrolytically stable lesions structurally mimicking the DPCs produced between the N7 position of guanine in DNA and basic lysine or arginine side chains of proteins and peptides.


Assuntos
DNA/química , Peptídeos/química , Proteínas/química , Aminação , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução
12.
Curr Protoc Nucleic Acid Chem ; 61: 4.61.1-4.61.22, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26344227

RESUMO

Post-oligomerization synthesis is a useful technique for preparing site-specifically modified DNA oligomers. This approach involves site-specific incorporation of inherently reactive halogenated nucleobases into DNA strands using standard solid-phase synthesis, followed by post-oligomerization nucleophilic aromatic substitution (SNAr) reactions with carcinogen-derived synthons. In these reactions, the inherent reactivities of DNA and carcinogen-derived species are reversed: the modified DNA nucleobase acts as an electrophile, while the carcinogen-derived species acts as a nucleophile. In the present protocol, we describe the use of the post-oligomerization approach to prepare DNA strands containing site- and stereospecific N6-adenine and N1,N6-adenine adducts induced by epoxide metabolites of the known human and animal carcinogen 1,3-butadiene (BD). The resulting oligomers containing site-specific, structurally defined DNA adducts can be used in structural and biological studies to reveal the roles of specific BD adducts in carcinogenesis and mutagenesis.


Assuntos
Adutos de DNA/química , Oligodesoxirribonucleotídeos/química , Adenina/química , Butadienos/química
13.
J Am Soc Mass Spectrom ; 25(7): 1124-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24867429

RESUMO

Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI(+)-HRMS(3) analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 10(8) nucleotides in HT1080 cells treated with 0.5-10 µM EB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 10(8) nucleotides, respectively [corrected]. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI(+)-HRMS(3) Orbitrap methodology to quantitative analysis of DNA adducts in vivo.


Assuntos
Butadienos/química , Adutos de DNA/análise , Adutos de DNA/química , Exposição Ambiental/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Adulto , Animais , Butadienos/metabolismo , Linhagem Celular Tumoral , Adutos de DNA/metabolismo , Compostos de Epóxi/análise , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Feminino , Humanos , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos F344 , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
14.
ACS Chem Biol ; 9(8): 1860-8, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24918113

RESUMO

DNA-protein cross-links (DPCs) are bulky, helix-distorting DNA lesions that form in the genome upon exposure to common antitumor drugs, environmental/occupational toxins, ionizing radiation, and endogenous free-radical-generating systems. As a result of their considerable size and their pronounced effects on DNA-protein interactions, DPCs can interfere with DNA replication, transcription, and repair, potentially leading to mutagenesis, genotoxicity, and cytotoxicity. However, the biological consequences of these ubiquitous lesions are not fully understood due to the difficulty of generating DNA substrates containing structurally defined, site-specific DPCs. In the present study, site-specific cross-links between the two biomolecules were generated by copper-catalyzed [3 + 2] Huisgen cycloaddition (click reaction) between an alkyne group from 5-(octa-1,7-diynyl)-uracil in DNA and an azide group within engineered proteins/polypeptides. The resulting DPC substrates were subjected to in vitro primer extension in the presence of human lesion bypass DNA polymerases η, κ, ν, and ι. We found that DPC lesions to the green fluorescent protein and a 23-mer peptide completely blocked DNA replication, while the cross-link to a 10-mer peptide was bypassed. These results indicate that the polymerases cannot read through the larger DPC lesions and further suggest that proteolytic degradation may be required to remove the replication block imposed by bulky DPC adducts.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/síntese química , DNA/química , Proteínas/química , Alcinos/química , Azidas/química , Reação de Cicloadição , Proteínas de Ligação a DNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA