Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405957

RESUMO

Many intracellular bacteria, including the obligate intracellular pathogen Chlamydia trachomatis, grow within a membrane-bound bacterium-containing vacuole (BCV). Secreted cytosolic effectors modulate host activity, but an understanding of the host-pathogen interactions that occur at the BCV membrane is limited by the difficulty in purifying membrane fractions from infected host cells. We used the ascorbate peroxidase (APEX2) proximity labeling system, which labels proximal proteins with biotin in vivo, to study the protein-protein interactions that occur at the chlamydial vacuolar, or inclusion, membrane. An in vivo understanding of the secreted chlamydial inclusion membrane protein (Inc) interactions (e.g., Inc-Inc and Inc-eukaryotic protein) and how these contribute to overall host-chlamydia interactions at this unique membrane is lacking. We hypothesize some Incs organize the inclusion membrane, whereas other Incs bind eukaryotic proteins to promote chlamydia-host interactions. To study this, Incs fused to APEX2 were expressed in C. trachomatis L2. Affinity purification-mass spectrometry (AP-MS) identified biotinylated proteins, which were analyzed for statistical significance using significance analysis of the interactome (SAINT). Broadly supporting both Inc-Inc and Inc-host interactions, our Inc-APEX2 constructs labeled Incs as well as known and previously unreported eukaryotic proteins localizing to the inclusion. We demonstrate, using bacterial two-hybrid and coimmunoprecipitation assays, that endogenous LRRFIP1 (LRRF1) is recruited to the inclusion by the Inc CT226. We further demonstrate interactions between CT226 and the Incs used in our study to reveal a model for inclusion membrane organization. Combined, our data highlight the utility of APEX2 to capture the complex in vivo protein-protein interactions at the chlamydial inclusion.


Assuntos
Chlamydia trachomatis/fisiologia , Proteínas de Bactérias , Biotinilação , Chlamydia trachomatis/genética , Chlamydia trachomatis/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes , Estreptavidina
2.
Mol Cell Biol ; : 1-13, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779337

RESUMO

The obligate intracellular pathogen Chlamydia trachomatis has unique metabolic requirements as it proceeds through its biphasic developmental cycle from within the inclusion within the host cell. In our previous study, we identified a host protein, PICALM, which localizes to the chlamydial inclusion. PICALM functions in many host pathways including the recycling of receptors, specific SNARE proteins, and molecules like transferrin, and maintaining cholesterol homeostasis. Hence, we hypothesized that PICALM functions to maintain the cholesterol content and to moderate trafficking from the endosomal recycling pathway to the inclusion, which controls chlamydial access to this pathway. In uninfected cells, siRNA knockdown of PICALM resulted in increased cholesterol within the Golgi and transferrin receptor (TfR) positive vesicles (recycling endosomes). PICALM knockdown in cells infected with C. trachomatis resulted in increased levels of Golgi-derived lipid and protein, TfR, transferrin, and Rab11-FIP1 localized to inclusions and a decrease of Golgi fragmentation at and Rab11 trafficking to the inclusion. Interestingly, chlamydial infection alone also increases cholesterol in TfR and Rab11-associated vesicles, and PICALM knockdown reverses this effect. Our data suggest that PICALM functions to balance or limit chlamydial access to multiple subcellular trafficking pathways to maintain the health of the host cell during chlamydial infection.

3.
Methods Mol Biol ; 2042: 245-278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31385281

RESUMO

In the study of intracellular bacteria that reside within a membrane-bound vacuole, there are many questions related to how prokaryotic or eukaryotic transmembrane or membrane-associated proteins are organized and function within the membranes of these pathogen-containing vacuoles. Yet this host-pathogen interaction interface has proven difficult to experimentally resolve. For example, one method to begin to understand protein function is to determine the protein-binding partners; however, examining protein-protein interactions of hydrophobic transmembrane proteins is not widely successful using standard immunoprecipitation or coimmunoprecipitation techniques. In these scenarios, the lysis conditions that maintain protein-protein interactions are not compatible with solubilizing hydrophobic membrane proteins. In this chapter, we outline two proximity labeling systems to circumvent these issues to study (1) eukaryotic proteins that localize to the membrane-bound inclusion formed by Chlamydia trachomatis using BioID, and (2) chlamydial proteins that are inserted into the inclusion membrane using APEX2. BioID is a promiscuous biotin ligase to tag proximal proteins with biotin. APEX2 is an ascorbate peroxidase that creates biotin-phenoxyl radicals to label proximal proteins with biotin or 3,3'-diaminobenzidine intermediates for examination of APEX2 labeling of subcellular structures using transmission electron microscopy. We present how these methods were originally conceptualized and developed, so that the user can understand the strengths and limitations of each proximity labeling system. We discuss important considerations regarding experimental design, which include careful consideration of background conditions and statistical analysis of mass spectrometry results. When applied in the appropriate context with adequate controls, these methods can be powerful tools toward understanding membrane interfaces between intracellular pathogens and their hosts.


Assuntos
Infecções por Chlamydia/patologia , Chlamydia trachomatis/fisiologia , Interações Hospedeiro-Patógeno , Corpos de Inclusão/microbiologia , Ascorbato Peroxidases/análise , Proteínas de Bactérias/análise , Biotinilação , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/isolamento & purificação , Células HeLa , Humanos , Corpos de Inclusão/patologia , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA