Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(1): 117-128, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38159292

RESUMO

The TAM family of receptor tyrosine kinases is implicated in multiple distinct oncogenic signaling pathways. However, to date, there are no FDA-approved small molecule inhibitors for the TAM kinases. Inhibitor design and screening rely on tools to study the kinase activity. Our goal was to address this gap by designing a set of synthetic peptide substrates for each of the TAM family members: Tyro3, Axl, and Mer. We used an in vitro phosphoproteomics workflow to determine the substrate profile of each TAM kinase and input the identified substrates into our data processing pipeline, KINATEST-ID, producing a position-specific scoring matrix for each target kinase and generating a list of candidate synthetic peptide substrates. We synthesized and characterized a set of those substrate candidates, systematically measuring their initial phosphorylation rate with each TAM kinase by LC-MS. We also used the multimer modeling function of AlphaFold2 (AF2) to predict peptide-kinase interactions at the active site for each of the novel candidate peptide sequences against each of the TAM family kinases and observed that, remarkably, every sequence for which it predicted a putative catalytically competent interaction was also demonstrated biochemically to be a substrate for one or more of the TAM kinases. This work shows that kinase substrate design can be achieved using a combination of preference motifs and structural modeling, and it provides the first demonstration of peptide-protein interaction modeling with AF2 for predicting the likelihood of constructive catalytic interactions.


Assuntos
Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas/metabolismo , Furilfuramida , Receptores Proteína Tirosina Quinases , Peptídeos
2.
ACS Chem Biol ; 17(6): 1328-1333, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35653784

RESUMO

Bruton's tyrosine kinase (BTK) is a well-documented target for cancer therapeutics due to its role in B-cell signaling pathways. However, inhibitor design is hindered by lack of tools to assess kinase activity. We used in vitro phosphoproteomics to determine BTK's substrate preferences and applied this information to our updated data processing pipeline, KINATEST-ID 2.1.0. This pipeline generates a position-specific scoring matrix for BTK and a list of candidate synthetic substrates, each given a score. Characterization of selected synthetic substrates demonstrated a correlation between KINATEST-ID 2.1.0 score and biochemical performance in in vitro kinase assays. Additionally, by incorporating a known terbium-chelation motif, we adapted synthetic substrates for use in an antibody-free time-resolved terbium luminescence assay. This assay has applications in high-throughput inhibitor screening.


Assuntos
Luminescência , Térbio , Tirosina Quinase da Agamaglobulinemia , Medições Luminescentes , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA