Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Cancer ; 129(10): 1667-1678, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37723317

RESUMO

BACKGROUND: Neuroblastoma is a paediatric cancer that is characterised by poor prognosis for chemoresistant disease, highlighting the need for better treatment options. Here, we asked whether BH3-mimetics inhibiting BCL2 proteins may eliminate chemoresistant neuroblastoma cells. METHODS: We utilised cisplatin-adapted neuroblastoma cell lines as well as patient tissues before and after relapse to study alterations of BCL2 proteins upon chemoresistance. RESULTS: In a direct comparison of cisplatin-resistant cells we identified a prominent loss of sensitivity to BCL2/BCL-XL inhibitors that is associated with an increase in MCL1 dependency and high expression of MCL1 in patient tumour tissues. Screening of FDA-approved anti-cancer drugs in chemoresistant cells identified therapeutics that may be beneficial in combination with the clinically tested BH3-mimetic ABT263, but no synergistic drug interactions with the selective MCL1 inhibitor S63845. Further exploration of potential treatment options for chemoresistant neuroblastoma identified immunotherapy based on NK cells as highly promising, since NK cells are able to efficiently kill both parental and chemoresistant cells. CONCLUSIONS: These data highlight that the application of BH3-mimetics may differ between first line treatment and relapsed disease. Combination of NK cell-based immunotherapy with BH3-mimetics may further increase killing of chemoresistant neuroblastoma, outlining a new treatment strategy for relapsed neuroblastoma.


Assuntos
Antineoplásicos , Neuroblastoma , Criança , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Cisplatino/farmacologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neuroblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose
2.
Cells ; 12(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980247

RESUMO

Although the overall survival in pediatric rhabdomyosarcoma (RMS) has increased over the last decades, the most aggressive subtype of alveolar RMS is in dire need of novel treatment strategies. RMS cells evade cell death induction and immune control by increasing the expression of inhibitors of apoptosis proteins (IAPs), which can be exploited and targeted with stimulation with Smac mimetics. Here, we used the Smac mimetic BV6 to re-sensitize RMS spheroids to cell death, which increased killing induced by natural killer (NK) cells. Single BV6 treatment of RMS spheroids did not reduce spheroidal growth. However, we observed significant spheroidal decomposition upon BV6 pre-treatment combined with NK cell co-cultivation. Molecularly, IAPs s are rapidly degraded by BV6, which activates NF-κB signal transduction pathways in RMS spheroids. RNA sequencing analysis validated NF-κB activation and identified a plethora of BV6-regulated genes. Additionally, BV6 released caspases from IAP-mediated inhibition. Here, caspase-8 might play a major role, as knockdown experiments resulted in decreased NK cell-mediated attack. Taken together, we improved the understanding of the BV6 mechanism of RMS spheroid sensitization to cytotoxic immune cells, which could be suitable for the development of novel combinatory cellular immunotherapy with Smac mimetics.


Assuntos
Apoptose , Rabdomiossarcoma , Criança , Humanos , Apoptose/fisiologia , NF-kappa B/metabolismo , Proteínas Reguladoras de Apoptose , Morte Celular , Células Matadoras Naturais/metabolismo
3.
Cell Death Discov ; 8(1): 11, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013156

RESUMO

The induction of apoptosis is a direct way to eliminate tumor cells and improve cancer therapy. Apoptosis is tightly controlled by the balance of pro- and antiapoptotic Bcl-2 proteins. BH3 mimetics neutralize the antiapoptotic function of Bcl-2 proteins and are highly promising compounds inducing apoptosis in several cancer entities including pediatric malignancies. However, the clinical application of BH3 mimetics in solid tumors is impeded by the frequent resistance to single BH3 mimetics and the anticipated toxicity of high concentrations or combination treatments. One potential avenue to increase the potency of BH3 mimetics is the development of immune cell-based therapies to counteract the intrinsic apoptosis resistance of tumor cells and sensitize them to immune attack. Here, we describe spheroid cultures of pediatric cancer cells that can serve as models for drug testing. In these 3D models, we were able to demonstrate that activated allogeneic Natural Killer (NK) cells migrated into tumor spheroids and displayed cytotoxicity against a wide range of pediatric cancer spheroids, highlighting their potential as anti-tumor effector cells. Next, we investigated whether treatment of tumor spheroids with subtoxic concentrations of BH3 mimetics can increase the cytotoxicity of NK cells. Notably, the cytotoxic effects of NK cells were enhanced by the addition of BH3 mimetics. Treatment with either the Bcl-XL inhibitor A1331852 or the Mcl-1 inhibitor S63845 increased the cytotoxicity of NK cells and reduced spheroid size, while the Bcl-2 inhibitor ABT-199 had no effect on NK cell-mediated killing. Taken together, this is the first study to describe the combination of BH3 mimetics targeting Bcl-XL or Mcl-1 with NK cell-based immunotherapy, highlighting the potential of BH3 mimetics in immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA