Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Am Chem Soc ; 141(36): 14329-14339, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31433629

RESUMO

The enthalpic and entropic components of Cu2+ and Cu+ binding to the blue copper protein azurin have been quantified with isothermal titration calorimetry (ITC) measurements and analysis, providing the first such experimental values for Cu+ binding to a protein. The high affinity of azurin for Cu2+ is entirely due to a very favorable binding entropy, while its even higher affinity for Cu+ is due to a favorable binding enthalpy and entropy. The binding thermodynamics provide insight into bond enthalpies at the blue copper site and entropic contributions from desolvation and proton displacement. These values were used in thermodynamic cycles to determine the enthalpic and entropic contributions to the free energy of reduction and thus the reduction potential. The reduction thermodynamics obtained with this method are in good agreement with previous results from temperature-dependent electrochemical measurements. The calorimetry method, however, provides new insight into contributions from the initial (oxidized) and final (reduced) states of the reduction. Since ITC measurements quantify the protons that are displaced upon metal binding, the proton transfer that is coupled with electron transfer is also determined with this method. Preliminary results for Cu2+ and Cu+ binding to the Phe114Pro variant of azurin demonstrate the insight about protein tuning of the reduction potential that is provided by the binding thermodynamics of each metal oxidation state.

2.
Biochemistry ; 56(26): 3328-3336, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28562023

RESUMO

Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase with a high affinity for metal ions at its α site but a lower affinity at its ß site in the absence of a substrate. Isothermal titration calorimetry (ITC) has been used to quantify the Co(II) and Mn(II) binding affinities and thermodynamics of the two sites in wild-type GpdQ and two mutants, both in the absence and in the presence of phosphate. Metal ions bind to the six-coordinate α site in an entropically driven process with loss of a proton, while binding at the ß site is not detected by ITC. Phosphate enhances the metal affinity of the α site by increasing the binding entropy and the metal affinity of the ß site by enthalpic (Co) or entropic (Mn) contributions, but no additional loss of protons. Mutations of first- and second-coordination sphere residues at the ß site increase the metal affinity of both sites by enhancing the binding enthalpy. In particular, loss of the hydrogen bond from second-sphere Ser127 to the metal-coordinating Asn80 has a significant effect on the metal binding thermodynamics that result in a resting binuclear active site with high catalytic activity. While structural and spectroscopic data with excess metal ions have indicated a bridging hydroxide in the binuclear GpdQ site, analysis of ITC data here reveals the loss of a single proton in the assembly of this site, indicating that the metal-bound hydroxide nucleophile is formed in the resting inactive mononuclear form, which becomes catalytically competent upon binding the second metal ion.


Assuntos
Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Enterobacter aerogenes/enzimologia , Manganês/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Substituição de Aminoácidos , Asparagina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Calorimetria , Domínio Catalítico , Ativação Enzimática , Ligação de Hidrogênio , Cinética , Mutação , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Fósforo/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/química , Termodinâmica , Titulometria
3.
J Am Chem Soc ; 139(2): 910-921, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27989130

RESUMO

The organomercurial lyase MerB has the unique ability to cleave carbon-Hg bonds, and structural studies indicate that three residues in the active site (C96, D99, and C159 in E. coli MerB) play important roles in the carbon-Hg bond cleavage. However, the role of each residue in carbon-metal bond cleavage has not been well-defined. To do so, we have structurally and biophysically characterized the interaction of MerB with a series of organotin and organolead compounds. Studies with two known inhibitors of MerB, dimethyltin (DMT) and triethyltin (TET), reveal that they inhibit by different mechanisms. In both cases the initial binding is to D99, but DMT subsequently binds to C96, which induces a conformation change in the active site. In contrast, diethyltin (DET) is a substrate for MerB and the SnIV product remains bound in the active site in a coordination similar to that of HgII following cleavage of organomercurial compounds. The results with analogous organolead compounds are similar in that trimethyllead (TML) is not cleaved and binds only to D99, whereas diethyllead (DEL) is a substrate and the PbIV product remains bound in the active site. Binding and cleavage is an exothermic reaction, while binding to D99 has negligible net heat flow. These results show that initial binding of organometallic compounds to MerB occurs at D99 followed, in some cases, by cleavage and loss of the organic moieties and binding of the metal ion product to C96, D99, and C159. The N-terminus of MerA is able to extract the bound PbVI but not the bound SnIV. These results suggest that MerB could be utilized for bioremediation applications, but certain organolead and organotin compounds may present an obstacle by inhibiting the enzyme.

4.
Biochemistry ; 55(7): 1070-81, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26820485

RESUMO

In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.


Assuntos
Ácido Aspártico/metabolismo , Cobre/metabolismo , Proteínas de Escherichia coli/química , Liases/química , Modelos Moleculares , Proteínas Mutantes/química , Compostos Organomercúricos/metabolismo , Substituição de Aminoácidos , Ácido Aspártico/química , Bacillus megaterium/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Cobre/química , Cristalografia por Raios X , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Liases/genética , Liases/metabolismo , Mercúrio/química , Mercúrio/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Compostos Organomercúricos/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo
5.
J Biol Inorg Chem ; 21(5-6): 659-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27350155

RESUMO

Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co(2+), Cd(2+), Cu(2+), Ni(2+) and Mn(2+). The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn(2+). This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving-Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His3 coordination that is imposed at the protein site.


Assuntos
Anidrase Carbônica II/química , Metais Pesados/química , Animais , Anidrase Carbônica II/metabolismo , Bovinos , Eritrócitos/enzimologia , Humanos , Metais Pesados/metabolismo , Estabilidade Proteica , Desdobramento de Proteína , Teoria Quântica , Temperatura
6.
Biochemistry ; 53(8): 1296-301, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24506168

RESUMO

The thermodynamics of formation of the insulin hexamer, which is stabilized by two Zn(2+) ions, were quantified by isothermal titration calorimetry (ITC). Because the insulin monomer is unstable to aggregation (fibrillation) during ITC measurements, an original method involving EDTA chelation of Zn(2+) from the hexamer was employed. The two metal ions are chelated sequentially, reflecting stepwise Zn(2+) binding and stabilization of the quaternary structure. Analysis of the ITC data reveals that two to three H(+) bind to the hexamer upon its formation at pH 7.4, which is both enthalpically and entropically favored. The former is due to Zn(2+) coordination to His residues from three subunits, and the latter is associated with desolvation that accompanies the protonation and the packing of the subunits in the hexamer.


Assuntos
Insulina/química , Multimerização Proteica , Prótons , Zinco/metabolismo , Humanos , Insulina/metabolismo , Modelos Moleculares , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Termodinâmica , Zinco/farmacologia
7.
Biochemistry ; 53(22): 3576-84, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24811232

RESUMO

The insulin hexamer is resistant to degradation and fibrillation, which makes it an important quaternary structure for its in vivo storage in Zn(2+)- and Ca(2+)-rich vesicles in the pancreas and for pharmaceutical formulations. In addition to the two Zn(2+) ions that are required for its formation, three other species, Zn-coordinating anions (e.g., Cl(-)), Ca(2+), and phenols (e.g., resorcinol), bind to the hexamer and affect the subunit conformation and stability. The contributions of these four species to the thermodynamics of insulin unfolding have been quantified by differential scanning calorimetry and thermal unfolding measurements to determine the extent and nature of their stabilization of the insulin hexamer. Both Zn(2+) and resorcinol make a significant enthalpic contribution, while Ca(2+) primarily affects the protein heat capacity (solvation) by its interactions in the central cation-binding cavity, which is modulated by the surrounding subunit conformations. Coordinating anions have a negligible effect on the stability of the hexamer, even though subunits shift to an alternate conformation when these anions bind to the Zn(2+) ions. Finally, Zn(2+) in excess of the two that are required to form the hexamer further stabilizes the protein by additional enthalpic contributions.


Assuntos
Insulina/química , Termodinâmica , Animais , Varredura Diferencial de Calorimetria , Bovinos , Cristalografia por Raios X , Humanos , Insulina Lispro/química , Estabilidade Proteica , Estrutura Quaternária de Proteína , Desdobramento de Proteína , Suínos
8.
J Biol Inorg Chem ; 19(8): 1263-75, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25104333

RESUMO

Metal ion-dependent, organophosphate-degrading enzymes have acquired increasing attention due to their ability to degrade and thus detoxify commonly used pesticides and nerve agents such as sarin. The best characterized of these enzymes are from Pseudomonas diminuta (OPH) and Agrobacterium radiobacter (OpdA). Despite high sequence homology (>90 % identity) and conserved metal ion coordination these enzymes display considerable variations in substrate specificity, metal ion affinity/preference and reaction mechanism. In this study, we highlight the significance of the presence (OpdA) or absence (OPH) of an extended hydrogen bond network in the active site of these enzymes for the modulation of their catalytic properties. In particular, the second coordination sphere residue in position 254 (Arg in OpdA, His in OPH) is identified as a crucial factor in modulating the substrate preference and binding of these enzymes. Inhibition studies with fluoride also support a mechanism for OpdA whereby the identity of the hydrolysis-initiating nucleophile changes as the pH is altered. The same is not observed for OPH.


Assuntos
Agrobacterium tumefaciens/enzimologia , Inibidores Enzimáticos/farmacologia , Fluoretos/farmacologia , Organofosfatos/farmacologia , Hidrolases de Triester Fosfórico/antagonistas & inibidores , Pseudomonas/enzimologia , Agrobacterium tumefaciens/isolamento & purificação , Calorimetria , Inibidores Enzimáticos/química , Fluoretos/química , Concentração de Íons de Hidrogênio , Cinética , Organofosfatos/química , Hidrolases de Triester Fosfórico/metabolismo , Pseudomonas/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
9.
J Inorg Biochem ; 242: 112157, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801620

RESUMO

Metallothionein 3 (MT-3) is a cysteine-rich metal-binding protein that is expressed in the mammalian central nervous system and kidney. Various reports have posited a role for MT-3 in regulating the actin cytoskeleton by promoting the assembly of actin filaments. We generated purified, recombinant mouse MT-3 of known metal compositions, either with zinc (Zn), lead (Pb), or copper/zinc (Cu/Zn) bound. None of these forms of MT-3 accelerated actin filament polymerization in vitro, either with or without the actin binding protein profilin. Furthermore, using a co-sedimentation assay, we did not observe Zn-bound MT-3 in complex with actin filaments. Cu2+ ions on their own induced rapid actin polymerization, an effect that we attribute to filament fragmentation. This effect of Cu2+ is reversed by adding either EGTA or Zn-bound MT-3, indicating that either molecule can chelate Cu2+ from actin. Altogether, our data indicate that purified recombinant MT-3 does not directly bind actin but it does attenuate the Cu-induced fragmentation of actin filaments.


Assuntos
Cobre , Metalotioneína 3 , Animais , Camundongos , Cobre/química , Metalotioneína/metabolismo , Actinas , Zinco/química , Íons , Citoesqueleto de Actina/metabolismo , Mamíferos/metabolismo
10.
J Am Chem Soc ; 134(25): 10405-18, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22591173

RESUMO

The thermodynamics of Zn(2+) binding to three peptides corresponding to naturally occurring Zn-binding sequences in transcription factors have been quantified with isothermal titration calorimetry (ITC). These peptides, the third zinc finger of Sp1 (Sp1-3), the second zinc finger of myelin transcription factor 1 (MyT1-2), and the second Zn-binding sequence of the DNA-binding domain of glucocorticoid receptor (GR-2), bind Zn(2+) with Cys(2)His(2), Cys(2)HisCys, and Cys(4) coordination, respectively. Circular dichroism confirms that Sp1-3 and MyT1-2 have considerable and negligible Zn-stabilized secondary structure, respectively, and indicate only a small amount for GR-2. The pK(a)'s of the Sp1-3 cysteines and histidines were determined by NMR and used to estimate the number of protons displaced by Zn(2+) at pH 7.4. ITC was also used to determine this number, and the two methods agree. Subtraction of buffer contributions to the calorimetric data reveals that all three peptides have a similar affinity for Zn(2+), which has equal enthalpy and entropy components for Sp1-3 but is more enthalpically disfavored and entropically favored with increasing Cys ligands. The resulting enthalpy-entropy compensation originates from the Zn-Cys coordination, as subtraction of the cysteine deprotonation enthalpy results in a similar Zn(2+)-binding enthalpy for all three peptides, and the binding entropy tracks with the number of displaced protons. Metal and protein components of the binding enthalpy and entropy have been estimated. While dominated by Zn(2+) coordination to the cysteines and histidines, other residues in the sequence affect the protein contributions that modulate the stability of these motifs.


Assuntos
Cisteína/química , Termodinâmica , Dedos de Zinco , Zinco/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estabilidade Proteica
11.
Chem Sci ; 13(18): 5289-5304, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655557

RESUMO

Metallothioneins (MTs) are a ubiquitous class of small metal-binding proteins involved in metal homeostasis and detoxification. While known for their high affinity for d10 metal ions, there is a surprising dearth of thermodynamic data on metals binding to MTs. In this study, Zn2+ and Cu+ binding to mammalian metallothionein-3 (MT-3) were quantified at pH 7.4 by isothermal titration calorimetry (ITC). Zn2+ binding was measured by chelation titrations of Zn7MT-3, while Cu+ binding was measured by Zn2+ displacement from Zn7MT-3 with competition from glutathione (GSH). Titrations in multiple buffers enabled a detailed analysis that yielded condition-independent values for the association constant (K) and the change in enthalpy (ΔH) and entropy (ΔS) for these metal ions binding to MT-3. Zn2+ was also chelated from the individual α and ß domains of MT-3 to quantify the thermodynamics of inter-domain interactions in metal binding. Comparative titrations of Zn7MT-2 with Cu+ revealed that both MT isoforms have similar Cu+ affinities and binding thermodynamics, indicating that ΔH and ΔS are determined primarily by the conserved Cys residues. Inductively coupled plasma mass spectrometry (ICP-MS) analysis and low temperature luminescence measurements of Cu-replete samples showed that both proteins form two Cu4 +-thiolate clusters when Cu+ displaces Zn2+ under physiological conditions. Comparison of the Zn2+ and Cu+ binding thermodynamics reveal that enthalpically-favoured Cu+, which forms Cu4 +-thiolate clusters, displaces the entropically-favoured Zn2+. These results provide a detailed thermodynamic analysis of d10 metal binding to these thiolate-rich proteins and quantitative support for, as well as molecular insight into, the role that MT-3 plays in the neuronal chemistry of copper.

12.
Radiat Meas ; 46(9): 882-887, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22125410

RESUMO

Rapid and accurate retrospective dosimetry is of critical importance and strategic value for the emergency medical response to a large-scale radiological/nuclear event. One technique that has the potential for rapid and accurate dosimetry measurements is electron paramagnetic resonance (EPR) spectroscopy of relatively stable radiation-induced signals (RIS) in fingernails and toenails. Two approaches are being developed for EPR nail dosimetry. In the approach using ex vivo measurements on nail clippings, accurate estimation of the dose-dependent amplitude of the RIS is complicated by the presence of mechanically-induced signals (MIS) that are generated during the nail clipping. Recent developments in ex vivo nail dosimetry, including a thorough characterization of the MIS and an appreciation of the role of hydration and the development of effective analytic techniques, have led to improvements in the accuracy and precision of this approach. An in vivo nail dosimetry approach is also very promising, as it eliminates the problems of MIS from the clipping and it has the potential to be an effective and efficient approach for field deployment. Two types of EPR resonators are being developed for in vivo measurements of fingernails and toenails.

13.
J Biol Inorg Chem ; 15(8): 1183-91, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20725755

RESUMO

The thermodynamics of metals ions binding to proteins and other biological molecules can be measured with isothermal titration calorimetry (ITC), which quantifies the binding enthalpy (ΔH°) and generates a binding isotherm. A fit of the isotherm provides the binding constant (K), thereby allowing the free energy (ΔG°) and ultimately the entropy (ΔS°) of binding to be determined. The temperature dependence of ΔH° can then provide the change in heat capacity (ΔC (p)°) upon binding. However, ITC measurements of metal binding can be compromised by undesired reactions (e.g., precipitation, hydrolysis, and redox), and generally involve competing equilibria with the buffer and protons, which contribute to the experimental values (K (ITC), ΔH (ITC)). Guidelines and factors that need to be considered for ITC measurements involving metal ions are outlined. A general analysis of the experimental ITC values that accounts for the contributions of metal-buffer speciation and proton competition and provides condition-independent thermodynamic values (K, ΔH°) for metal binding is developed and validated.


Assuntos
Calorimetria , Química Bioinorgânica/métodos , Termodinâmica
14.
Chemosphere ; 228: 418-426, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31051343

RESUMO

Two major components of insensitive munition formulations, nitroguanidine (NQ) and 3-nitro-1,2,4-triazol-5-one (NTO), are highly water soluble and therefore likely to photo-transform while in solution in the environment. The ecotoxicities of NQ and NTO solutions are known to increase with UV exposure, but a detailed accounting of aqueous degradation rates, products, and pathways under different exposure wavelengths is currently lacking. Here, we irradiated aqueous solutions of NQ and NTO over a 32-h period at three ultraviolet wavelengths (254 nm, 300 nm, and 350 nm) and analyzed their degradation rates and transformation products. NQ was completely degraded by 30 min at 254 nm and by 4 h at 300 nm, but it was only 10% degraded after 32 h at 350 nm. Mass recoveries of NQ and its transformation products were ≥80% for all three wavelengths, and consisted of large amounts of guanidine, nitrate, and nitrite, and smaller amounts of cyanamide, cyanoguanidine, urea, and ammonium. NTO degradation was greatest at 300 nm with 3% remaining after 32 h, followed by 254 nm (7% remaining) and 350 nm (20% remaining). Mass recoveries of NTO and its transformation products were high for the first 8 h but decreased to 22-48% by 32 h, with the major aqueous products identified as ammonium, nitrate, nitrite, and a urazole intermediate. Environmental half-lives of NQ and NTO in pure water were estimated as 4 and 6 days, respectively. We propose photo-degradation pathways for NQ and NTO supported by observed and quantified degradation products and changes in solution pH.


Assuntos
Guanidinas/química , Nitrocompostos/química , Triazóis/química , Monitoramento Ambiental , Fotólise
15.
J Am Chem Soc ; 130(26): 8148-9, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-18529053

RESUMO

The binding of arsenite (As(III)) and monomethylarsenite (MMAIII) to the DNA-binding domain of the glucocorticoid receptor (GR-DBD) and their competition with the two required Zn2+ ions of this domain have been investigated with isothermal titration calorimetry (ITC) and circular dichroism (CD). The binding thermodynamics indicate that MMAIII, but not arsenite, is able to compete with one of the two Zn2+ ions. This has been confirmed by monitoring arsenite and MMAIII titrations of Zn2GR-DBD with CD. Only MMAIII is able to eliminate the Zn-stabilized secondary structure, consistent with partial or complete displacement of at least one Zn2+ ion and, therefore, loss of GR-DBD competence to bind to the DNA of its recognition site, the glucocorticoid response element (GRE).


Assuntos
Arsenitos/química , Receptores de Glucocorticoides/metabolismo , Zinco/química , Sítios de Ligação , Ligação Competitiva , Proteínas de Ligação a DNA , Humanos , Estrutura Secundária de Proteína , Receptores de Glucocorticoides/química , Termodinâmica
16.
J Phys Chem B ; 111(46): 13316-24, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17973414

RESUMO

Charcoals prepared from certain tropical woods contain stable paramagnetic centers, and these have been characterized by EPR spectroscopy in the absence and presence of oxygen. The EPR-detectable spin density has been determined, as has been the temperature- and frequency-dependence of the oxygen broadening of the EPR signal, which is orders of magnitude larger than that observed with other materials, such as lithium phthalocyanine. Three Lorentzian components are required to fit the char EPR spectrum in the presence of oxygen, and the oxygen-dependence of the line width, intensity, and resonance position of the three components have been quantified. These results and the properties of porous carbonaceous materials are used to develop a model to explain the effect of oxygen on the char EPR spectral properties. The model is based on oxygen adsorption on the char surface according to a Langmuir isotherm and a dipolar interaction between the paramagnetic adsorbed gas and the charcoal spins. The three EPR components are correlated with the three known classes (sizes) of pores in charcoal, with the largest line broadening attributed to dipolar relaxation of spins in micropores, which have a larger specific surface area and a higher concentration of adsorbed oxygen. An attenuated, but similar, EPR response to oxygen by chars when they are immersed in aqueous solution is attributed to water competition with oxygen for adsorption on the char surface.


Assuntos
Carvão Vegetal/química , Oxigênio/química , Madeira/química , Adsorção , Algoritmos , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Químicos , Termodinâmica
17.
Chem Biol Interact ; 168(2): 159-68, 2007 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-17512921

RESUMO

The Xeroderma Pigmentosum A (XPA) protein is involved in the DNA damage recognition and repair complex formation steps of nucleotide excision repair (NER), and has been shown to preferentially bind to various forms of DNA damage including bulky lesions. DNA interstrand crosslinks are of particular interest as a form of DNA damage, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery, and mitomycin C (MMC) is one of several useful cancer chemotherapy drugs that induce these lesions. Purified XPA and the minimal DNA-binding domain of XPA are both fully capable of preferentially binding to MMC-DNA interstrand crosslinks in the absence of other proteins from the NER complex. Circular dichroism (CD) and gel shift assays were used to investigate XPA-DNA binding and to assess changes in secondary structure induced as a consequence of the interaction of XPA with model MMC-crosslinked and unmodified DNAs. These studies revealed that while XPA demonstrates only a modest increase in affinity for adducted DNA, it adopts a different conformation when bound to MMC-damaged DNA than when bound to undamaged DNA. This change in conformation may be more important in recruiting other proteins into a competent NER complex at damaged sites than preferential binding per se. Arsenic had little effect on XPA binding even at toxic concentrations, whereas cadmium reduced XPA binding to DNA to 10-15% that of Zn-XPA, and zinc addition could only partially restore activity. In addition, there was little or no change in conformation when Cd-XPA bound MMC-crosslinked DNA even though it demonstrated preferential binding, which may contribute to the mechanism by which cadmium can act as a co-mutagen and co-carcinogen.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Arsênio/farmacologia , Cádmio/farmacologia , Adutos de DNA/metabolismo , Reparo do DNA , Mitomicina/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Antibióticos Antineoplásicos/farmacologia , Dicroísmo Circular , Interações Medicamentosas , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Mitomicina/farmacologia , Proteína de Xeroderma Pigmentoso Grupo A/farmacologia , Dedos de Zinco
18.
Methods Enzymol ; 567: 3-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794348

RESUMO

ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ΔHITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ΔG(o), ΔH, ΔS, and ΔCP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein.


Assuntos
Calorimetria , Metais/metabolismo , Proteínas/metabolismo , Ligação Proteica
19.
Protein Sci ; 14(6): 1556-69, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15930003

RESUMO

Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20%-30% of breast cancers. Grb7 binds to erbB2 and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In a prior study, we reported the solution structure of the Grb7-SH2/erbB2 peptide complex. In this study, T(1), T(2), and steady-state NOE measurements were performed on the Grb7-SH2 domain, and the backbone relaxation behavior of the domain is discussed with respect to the potential function of an insert region present in all three members of this protein family. Isothermal titration calorimetry (ITC) studies were completed measuring the thermodynamic parameters of the binding of a 10-residue phosphorylated peptide representative of erbB2 to the SH2 domain. These measurements are compared to calorimetric studies performed on other SH2 domain/phosphorylated peptide complexes available in the literature.


Assuntos
Complexos Multiproteicos/química , Peptídeos/química , Proteínas/química , Receptor ErbB-2/química , Domínios de Homologia de src , Proteína Adaptadora GRB7 , Humanos , Termodinâmica
20.
Dalton Trans ; 44(37): 16494-505, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26327397

RESUMO

Conditions have been developed for the comproportionation reaction of Cu(2+) and copper metal to prepare aqueous solutions of Cu(+) that are stabilized from disproportionation by MeCN and other Cu(+)-stabilizing ligands. These solutions were then used in ITC measurements to quantify the thermodynamics of formation of a set of Cu(+) complexes (Cu(I)(MeCN)3(+), Cu(I)Me6Trien(+), Cu(I)(BCA)2(3-), Cu(I)(BCS)2(3-)), which have stabilities ranging over 15 orders of magnitude, for their use in binding and calorimetric measurements of Cu(+) interaction with proteins and other biological macromolecules. These complexes were then used to determine the stability and thermodynamics of formation of a 1 : 1 complex of Cu(+) with the biologically important tri-peptide glutathione, GSH. These results identify Me6Trien as an attractive Cu(+)-stabilizing ligand for calorimetric experiments, and suggest that caution should be used with MeCN to stabilize Cu(+) due to its potential for participating in unquantifiable ternary interactions.


Assuntos
Cobre/química , Acetonitrilas/química , Calorimetria , Complexos de Coordenação/química , Espectroscopia de Ressonância de Spin Eletrônica , Glutationa/química , Ligantes , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA