Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gut ; 72(7): 1355-1369, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36631247

RESUMO

OBJECTIVE: In acute pancreatitis (AP), bacterial translocation and subsequent infection of pancreatic necrosis are the main risk factors for severe disease and late death. Understanding how immunological host defence mechanisms fail to protect the intestinal barrier is of great importance in reducing the mortality risk of the disease. Here, we studied the role of the Treg/Th17 balance for maintaining the intestinal barrier function in a mouse model of severe AP. DESIGN: AP was induced by partial duct ligation in C57Bl/6 or DEREG mice, in which regulatory T-cells (Treg) were depleted by intraperitoneal injection of diphtheria toxin. By flow cytometry, functional suppression assays and transcriptional profiling we analysed Treg activation and characterised T-cells of the lamina propria as well as intraepithelial lymphocytes (IELs) regarding their activation and differentiation. Microbiota composition was examined in intestinal samples as well as in murine and human pancreatic necrosis by 16S rRNA gene sequencing. RESULTS: The prophylactic Treg-depletion enhanced the proinflammatory response in an experimental mouse model of AP but stabilised the intestinal immunological barrier function of Th17 cells and CD8+/γδTCR+ IELs. Treg depleted animals developed less bacterial translocation to the pancreas. Duodenal overgrowth of the facultative pathogenic taxa Escherichia/Shigella which associates with severe disease and infected necrosis was diminished in Treg depleted animals. CONCLUSION: Tregs play a crucial role in the counterbalance against systemic inflammatory response syndrome. In AP, Treg-activation disturbs the duodenal barrier function and permits translocation of commensal bacteria into pancreatic necrosis. Targeting Tregs in AP may help to ameliorate the disease course.


Assuntos
Pancreatite Necrosante Aguda , Linfócitos T Reguladores , Camundongos , Humanos , Animais , Doença Aguda , Translocação Bacteriana , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL
2.
Gastroenterology ; 158(1): 253-269.e14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593700

RESUMO

BACKGROUND & AIMS: Pancreatitis starts with primarily sterile local inflammation that induces systemic inflammatory response syndrome, followed by compensatory anti-inflammatory response syndrome (CARS). We investigated the mechanisms of these processes in mice and human serum. METHODS: We induced severe acute pancreatitis by partial duct ligation with caerulein stimulation or intraperitoneal injection of l-arginine in mice with deletion of interleukin (IL)12B, NLRP3, or IL18 and in mice given MCC950, a small molecule inhibitor of the NLRP3-inflammasome. Pancreata were collected from mice and analyzed by histology, and cytokine levels were measured in serum samples. We measured activation of adaptive immune responses in mice with pancreatitis by flow cytometry analysis of T cells (CD25 and CD69) isolated from the spleen. Differentiation of T-helper (Th1) cells, Th2 cells, and T-regulatory cells was determined by nuclear staining for TBET, GATA3, and FOXP3. We performed transcriptome analysis of mouse lymph nodes and bone marrow-derived macrophages after incubation with acini. We measured levels of cytokines in serum samples from patients with mild and severe acute pancreatitis. RESULTS: Activation of the adaptive immune response in mice was initiated by macrophage-derived, caspase 1-processed cytokines and required activation of NLRP3 (confirmed in serum samples from patients with pancreatitis). Spleen cells from mice with pancreatitis had increases in Th2 cells but not in Th1 cells. Bone marrow-derived macrophages secreted IL1B and IL18, but not IL12, after co-incubation with pancreatic acini. T-cell activation and severity of acute pancreatitis did not differ significantly between IL12B-deficient and control mice. In contrast, NLRP3- or IL18-deficient mice had reduced activation of T cells and no increase in Th2 cell-mediated responses compared with control mice. The systemic type 2 immune response was mediated by macrophage-derived cytokines of the IL1 family. Specifically, IL18 induced a Th2 cell-mediated response in the absence of IL12. MCC950 significantly reduced neutrophil infiltration, T-cell activation, and disease severity in mice. CONCLUSIONS: In mice with severe pancreatitis, we found systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome developed in parallel. Infiltrating macrophages promote inflammation and simultaneously induce a Th2 cell-mediated response via IL18. Inhibition of NLRP3 reduces systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome and might be used to treat patients with severe pancreatitis.


Assuntos
Furanos/administração & dosagem , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Pancreatite/imunologia , Sulfonamidas/administração & dosagem , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Células Acinares , Imunidade Adaptativa , Animais , Arginina/toxicidade , Células Cultivadas , Ceruletídeo/toxicidade , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Indenos , Injeções Intraperitoneais , Interleucina-18/imunologia , Interleucina-18/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Cultura Primária de Células , Sulfonas , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Células Th2/imunologia , Células Th2/metabolismo
3.
Pancreatology ; 20(8): 1637-1647, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33097430

RESUMO

BACKGROUND: Acute pancreatitis is a gastrointestinal disorder of high incidence resulting in life threatening complications in up to 20% of patients. Its severe form is characterized by an extensive and systemic immune response. We investigated the role of the adaptive immune response in two experimental models of pancreatitis. METHODS: In C57BI/6-mice mild pancreatitis was induced by 8-hourly injections of caerulein and severe pancreatitis by additional, partial pancreatic duct ligation. T-cell-activation was determined by flow-cytometry of CD25/CD69, T-cell-differentiation by nuclear staining of the transcription-factors Tbet, Gata3 and Foxp3. In vivo CD4+ T-cells were depleted using anti-CD4 antibody. Disease severity was determined by histology, serum amylase and lipase activities, lung MPO and serum cytokine levels (IL-6, TNFα, IL-10). RESULTS: In both models T-cells were activated. Th1-differentiation (Tbet) was absent during pancreatitis but we detected a pronounced Th2/Treg (Gata3/Foxp3) response which paralleled disease severity in both models. The complete depletion of CD4+ T-cells via anti-CD4 antibody, surprisingly, reduced disease severity significantly, as well as granulocyte infiltration and pro- and anti-inflammatory cytokine levels. Co-incubation of acini and T-cells did not lead to T-cell-activation by acinar cells but to acinar damage by T-cells. During pancreatitis no significant T-cell-infiltration into the pancreas was observed. CONCLUSION: T cells orchestrate the early local as well as the systemic immune responses in pancreatitis and are directly involved in organ damage. The Th2 response appears to increase disease severity, rather than conferring an immunological protection.


Assuntos
Imunidade Adaptativa , Diferenciação Celular , Pancreatite , Linfócitos T Reguladores , Células Th2 , Animais , Citocinas , Modelos Animais de Doenças , Ativação Linfocitária , Camundongos , Pancreatite/imunologia
4.
Mediators Inflamm ; 2016: 2974605, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073295

RESUMO

BACKGROUND AND PURPOSE: Regulatory T cells (Tregs) have been suggested to modulate stroke-induced immune responses. However, analyses of Tregs in patients and in experimental stroke have yielded contradictory findings. We performed the current study to assess the regulation and function of Tregs in peripheral blood of stroke patients. Age dependent expression of CD39 on Tregs was quantified in mice and men. METHODS: Total FoxP3(+) Tregs and CD39(+)FoxP3(+) Tregs were quantified by flow cytometry in controls and stroke patients on admission and on days 1, 3, 5, and 7 thereafter. Treg function was assessed by quantifying the inhibition of activation-induced expression of CD69 and CD154 on T effector cells (Teffs). RESULTS: Total Tregs accounted for 5.0% of CD4(+) T cells in controls and <2.8% in stroke patients on admission. They remained below control values until day 7. CD39(+) Tregs were most strongly reduced in stroke patients. On day 3 the Treg-mediated inhibition of CD154 upregulation on CD4(+) Teff was impaired in stroke patients. CD39 expression on Treg increased with age in peripheral blood of mice and men. CONCLUSION: We demonstrate a loss of active FoxP3(+)CD39(+) Tregs from stroke patient's peripheral blood. The suppressive Treg function of remaining Tregs is impaired after stroke.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Acidente Vascular Cerebral/imunologia , Linfócitos T Reguladores/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Acidente Vascular Cerebral/patologia
5.
Sci Rep ; 13(1): 10833, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402858

RESUMO

Acute pancreatitis (AP), which is characterized by self-digestion of the pancreas by its own prematurely activated digestive proteases, is a major reason for hospitalization. The autodigestive process causes necrotic cell death of pancreatic acinar cells and the release of damage associated molecular pattern which activate macrophages and drive the secretion of pro-inflammatory cytokines. The MYD88/IRAK signaling pathway plays an important role for the induction of inflammatory responses. Interleukin-1 receptor associated kinase-3 (IRAK3) is a counter-regulator of this pathway. In this study, we investigated the role of MYD88/IRAK using Irak3-/- mice in two experimental animal models of mild and severe AP. IRAK3 is expressed in macrophages as well as pancreatic acinar cells where it restrains NFκB activation. Deletion of IRAK3 enhanced the migration of CCR2+ monocytes into the pancreas and triggered a pro-inflammatory type 1 immune response characterized by significantly increased serum levels of TNFα, IL-6, and IL-12p70. Unexpectedly, in a mild AP model this enhanced pro-inflammatory response resulted in decreased pancreatic damage, whereas in a severe AP model, induced by partial pancreatic duct ligation, the increased pro-inflammatory response drives a severe systemic inflammatory response syndrome (SIRS) and is associated with an increased local and systemic damage. Our results indicate that complex immune regulation mechanism control the course of AP, where moderate pro-inflammation not necessarily associates with increased disease severity but also drives tissue regenerative processes through a more effective clearance of necrotic acinar cells. Only when the pro-inflammation exceeds a certain systemic level, it fuels SIRS and increases disease severity.


Assuntos
Pancreatite , Animais , Camundongos , Doença Aguda , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ceruletídeo/efeitos adversos , Modelos Animais de Doenças , Inflamação , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Necrose , Pâncreas/metabolismo , Pancreatite/metabolismo , Gravidade do Paciente , Transdução de Sinais , Síndrome de Resposta Inflamatória Sistêmica
6.
Nat Commun ; 13(1): 4502, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922425

RESUMO

Chronic pancreatitis (CP) is characterized by chronic inflammation and the progressive fibrotic replacement of exocrine and endocrine pancreatic tissue. We identify Treg cells as central regulators of the fibroinflammatory reaction by a selective depletion of FOXP3-positive cells in a transgenic mouse model (DEREG-mice) of experimental CP. In Treg-depleted DEREG-mice, the induction of CP results in a significantly increased stroma deposition, the development of exocrine insufficiency and significant weight loss starting from day 14 after disease onset. In CP, FOXP3+CD25+ Treg cells suppress the type-2 immune response by a repression of GATA3+ T helper cells (Th2), GATA3+ innate lymphoid cells type 2 (ILC2) and CD206+ M2-macrophages. A suspected pathomechanism behind the fibrotic tissue replacement may involve an observed dysbalance of Activin A expression in macrophages and of its counter regulator follistatin. Our study identified Treg cells as key regulators of the type-2 immune response and of organ remodeling during CP. The Treg/Th2 axis could be a therapeutic target to prevent fibrosis and preserve functional pancreatic tissue.


Assuntos
Pancreatite Crônica , Linfócitos T Reguladores , Animais , Fibrose , Fatores de Transcrição Forkhead/metabolismo , Imunidade Inata , Subunidade alfa de Receptor de Interleucina-2/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Transgênicos , Pancreatite Crônica/metabolismo
7.
Front Immunol ; 13: 991295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300116

RESUMO

Objective: Acute pancreatitis (AP) is an inflammatory disorder, the severe form of which is burdened with multi-organ dysfunction and high mortality. The pathogenesis of life -threatening organ complications, such as respiratory and renal failure, is unknown. Design: Organ dysfunction was investigated in a mouse model of AP. The influence of monocytes and neutrophils on multi organ dysfunction syndrome (MODS) was investigated in vivo by antibody depletion. Using real-time-fluorescence and deformability-cytometry (RT-DC) analysis we determined the mechanical properties of neutrophils and monocytes during AP. Furthermore, blood samples of pancreatitis patients were used to characterize severity-dependent chemokine profiles according to the revised Atlanta classification. Results: Similar to AP in humans, severe disease in the mouse model associates with organ dysfunction mainly of lung and kidney, which is triggered by a mobilisation of Ly6g-/CD11b+/Ly6c hi monocytes, but not of Ly6g+/CD11b+ neutrophils. Monocyte depletion by anti-CCR2 antibody treatment ameliorated lung function (oxygen consumption) without interfering with the systemic immune response. RT-DC analysis of circulation monocytes showed a significant increase in cell size during SAP, but without a compensatory increase in elasticity. Patient chemokine profiles show a correlation of AP severity with monocyte attracting chemokines like MCP-1 or MIG and with leukocyte mobilisation. Conclusion: In AP, the physical properties of mobilized monocytes, especially their large size, result in an obstruction of the fine capillary systems of the lung and of the kidney glomeruli. A selective depletion of monocytes may represent a treatment strategy for pancreatitis as well as for other inflammation-related disorders.


Assuntos
Monócitos , Pancreatite , Camundongos , Animais , Humanos , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/metabolismo , Doença Aguda , Quimiocinas/metabolismo , Modelos Animais de Doenças
8.
Pancreas ; 50(1): 3-11, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33370017

RESUMO

ABSTRACT: Acute pancreatitis (AP) is one of the most common gastroenterological disorders leading to hospitalization. It has long been debated whether biliary AP, about 30% to 50% of all cases, is induced by bile acids (BAs) when they reach the pancreas via reflux or via the systemic blood circulation.Besides their classical function in digestion, BAs have become an attractive research target because of their recently discovered property as signaling molecules. The underlying mechanisms of BAs have been investigated in various studies. Bile acids are internalized into acinar cells through specific G-protein-coupled BA receptor 1 and various transporters. They can further act via different receptors: the farnesoid X, ryanodine, and inositol triphosphate receptor. Bile acids induce a sustained Ca2+ influx from the endoplasmic reticulum and release of Ca2+ from acidic stores into the cytosol of acinar cells. The overload of intracellular Ca2+ results in mitochondrial depolarization and subsequent acinar cell necrosis. In addition, BAs have a biphasic effect on pancreatic ductal cells. A more detailed characterization of the mechanisms through which BAs contribute to the disease pathogenesis and severity will greatly improve our understanding of the underlying pathophysiology and may allow for the development of therapeutic and preventive strategies for gallstone-inducedAP.


Assuntos
Ácidos e Sais Biliares/metabolismo , Pâncreas/metabolismo , Pancreatite/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Necrose , Pâncreas/patologia , Pancreatite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA