Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(1): 28-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177929

RESUMO

Kinase inhibitors (KIs) are important cancer drugs but often feature polypharmacology that is molecularly not understood. This disconnect is particularly apparent in cancer entities such as sarcomas for which the oncogenic drivers are often not clear. To investigate more systematically how the cellular proteotypes of sarcoma cells shape their response to molecularly targeted drugs, we profiled the proteomes and phosphoproteomes of 17 sarcoma cell lines and screened the same against 150 cancer drugs. The resulting 2550 phenotypic profiles revealed distinct drug responses and the cellular activity landscapes derived from deep (phospho)proteomes (9-10,000 proteins and 10-27,000 phosphorylation sites per cell line) enabled several lines of analysis. For instance, connecting the (phospho)proteomic data with drug responses revealed known and novel mechanisms of action (MoAs) of KIs and identified markers of drug sensitivity or resistance. All data is publicly accessible via an interactive web application that enables exploration of this rich molecular resource for a better understanding of active signalling pathways in sarcoma cells, identifying treatment response predictors and revealing novel MoA of clinical KIs.


Assuntos
Antineoplásicos , Sarcoma , Humanos , Proteômica/métodos , Proteoma , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sarcoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
2.
Nat Chem Biol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904048

RESUMO

Medicinal chemistry has discovered thousands of potent protein and lipid kinase inhibitors. These may be developed into therapeutic drugs or chemical probes to study kinase biology. Because of polypharmacology, a large part of the human kinome currently lacks selective chemical probes. To discover such probes, we profiled 1,183 compounds from drug discovery projects in lysates of cancer cell lines using Kinobeads. The resulting 500,000 compound-target interactions are available in ProteomicsDB and we exemplify how this molecular resource may be used. For instance, the data revealed several hundred reasonably selective compounds for 72 kinases. Cellular assays validated GSK986310C as a candidate SYK (spleen tyrosine kinase) probe and X-ray crystallography uncovered the structural basis for the observed selectivity of the CK2 inhibitor GW869516X. Compounds targeting PKN3 were discovered and phosphoproteomics identified substrates that indicate target engagement in cells. We anticipate that this molecular resource will aid research in drug discovery and chemical biology.

3.
Mol Cell Proteomics ; 22(9): 100636, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597723

RESUMO

The active release of proteins into the extracellular space and the proteolytic cleavage of cell surface proteins are key processes that coordinate and fine-tune a multitude of physiological functions. The entirety of proteins that fulfill these extracellular tasks are referred to as the secretome and are of special interest for the investigation of biomarkers of disease states and physiological processes related to cell-cell communication. LC-MS-based proteomics approaches are a valuable tool for the comprehensive and unbiased characterization of this important subproteome. This review discusses procedures, opportunities, and limitations of mass spectrometry-based secretomics to better understand and navigate the complex analytical landscape for studying protein secretion in biomedical science.


Assuntos
Proteínas de Membrana , Proteômica , Espectrometria de Massas/métodos , Proteômica/métodos
4.
Nat Biotechnol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714896

RESUMO

Proteomics is making important contributions to drug discovery, from target deconvolution to mechanism of action (MoA) elucidation and the identification of biomarkers of drug response. Here we introduce decryptE, a proteome-wide approach that measures the full dose-response characteristics of drug-induced protein expression changes that informs cellular drug MoA. Assaying 144 clinical drugs and research compounds against 8,000 proteins resulted in more than 1 million dose-response curves that can be interactively explored online in ProteomicsDB and a custom-built Shiny App. Analysis of the collective data provided molecular explanations for known phenotypic drug effects and uncovered new aspects of the MoA of human medicines. We found that histone deacetylase inhibitors potently and strongly down-regulated the T cell receptor complex resulting in impaired human T cell activation in vitro and ex vivo. This offers a rational explanation for the efficacy of histone deacetylase inhibitors in certain lymphomas and autoimmune diseases and explains their poor performance in treating solid tumors.

5.
J Med Chem ; 66(20): 14278-14302, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37819647

RESUMO

Class II phosphoinositide-3-kinases (PI3Ks) play central roles in cell signaling, division, migration, and survival. Despite evidence that all PI3K class II isoforms serve unique cellular functions, the lack of isoform-selective inhibitors severely hampers the systematic investigation of their potential relevance as pharmacological targets. Here, we report the structural evaluation and molecular determinants for selective PI3K-C2α inhibition by a structure-activity relationship study based on a pteridinone scaffold, leading to the discovery of selective PI3K-C2α inhibitors called PITCOINs. Cocrystal structures and docking experiments supported the rationalization of the structural determinants essential for inhibitor activity and high selectivity. Profiling of PITCOINs in a panel of more than 118 diverse kinases showed no off-target kinase inhibition. Notably, by addressing a selectivity pocket, PITCOIN4 showed nanomolar inhibition of PI3K-C2α and >100-fold selectivity in a general kinase panel. Our study paves the way for the development of novel therapies for diseases related to PI3K-C2α function.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Isoformas de Proteínas , Fosfatidilinositóis
6.
Science ; 380(6640): 93-101, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36926954

RESUMO

Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.


Assuntos
Antineoplásicos , Apoptose , Processamento de Proteína Pós-Traducional , Proteômica , Antígenos CD20/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA