Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 77(2): 300-23, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20545860

RESUMO

The distribution of PBP5, the major D,D-carboxypeptidase in Escherichia coli, was mapped by immunolabelling and by visualization of GFP fusion proteins in wild-type cells and in mutants lacking one or more D,D-carboxypeptidases. In addition to being scattered around the lateral envelope, PBP5 was also concentrated at nascent division sites prior to visible constriction. Inhibiting PBP2 activity (which eliminates wall elongation) shifted PBP5 to midcell, whereas inhibiting PBP3 (which aborts divisome invagination) led to the creation of PBP5 rings at positions of preseptal wall formation, implying that PBP5 localizes to areas of ongoing peptidoglycan synthesis. A PBP5(S44G) active site mutant was more evenly dispersed, indicating that localization required enzyme activity and the availability of pentapeptide substrates. Both the membrane bound and soluble forms of PBP5 converted pentapeptides to tetrapeptides in vitro and in vivo, and the enzymes accepted the same range of substrates, including sacculi, Lipid II, muropeptides and artificial substrates. However, only the membrane-bound form localized to the developing septum and restored wild-type rod morphology to shape defective mutants, suggesting that the two events are related. The results indicate that PBP5 localization to sites of ongoing peptidoglycan synthesis is substrate dependent and requires membrane attachment.


Assuntos
Carboxipeptidases/metabolismo , Divisão Celular , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Carboxipeptidases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Peptidoglicano/biossíntese , Mapeamento de Interação de Proteínas , Especificidade por Substrato
2.
Eur J Biochem ; 269(1): 61-8, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11784299

RESUMO

Human interleukin-11 (hIL-11) is a pleiotropic cytokine that is involved in numerous biological activities such as hematopoiesis, osteoclastogenesis, neurogenesis and female fertility. IL-11 is obviously a key reagent to study the IL-11 receptors. However, conventional radio-iodination techniques lead to a loss of IL-11 bioactivity. Here, we report the construction and the production of a new recombinant human IL-11 (FP Delta IL-11). In this molecule, a specific phosphorylation site (RRASVA) has been introduced at the N-terminus of rhIL-11. It can be specifically phosphorylated by bovine heart protein kinase and accordingly, easily radiolabeled with (32)P. A high radiological specific activity (250,000 c.p.m x ng(-1) of protein) was obtained with the retention of full biological activity of the protein. The binding of (32)P-labeled FP Delta IL-11 to Ba/F3 cells stably transfected with plasmids encoding human IL-11 receptors alpha and beta chains (IL-11R alpha and gp130) was specific and saturable with a high affinity as determined from Scatchard plot analysis. Availability of this new ligand should prompt further studies on IL-11R structure, expression and regulation.


Assuntos
Interleucina-11/metabolismo , Receptores de Citocinas/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Sequência de Bases , Células Cultivadas , Humanos , Dados de Sequência Molecular , Radioisótopos de Fósforo , Fosforilação , Engenharia de Proteínas , Receptores de Citocinas/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA