Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biol Chem ; 293(38): 14707-14722, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30093403

RESUMO

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH in vitro, yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase). AIF-dependent JNK1 signaling culminates in the cadherin switch, and genetic reversal of this switch leads to apoptosis when AIF is suppressed. Notably, this widespread ability of AIF to promote JNK signaling can be uncoupled from its more limited role in respiratory chain stabilization. Thus, AIF is a transmitter of extra-mitochondrial signaling cues with important implications for human development and disease.


Assuntos
Antígenos CD/metabolismo , Fator de Indução de Apoptose/fisiologia , Caderinas/metabolismo , Transporte de Elétrons , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Apoptose , Catálise , Linhagem Celular , Metabolismo Energético , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxidantes/metabolismo , Oxirredução , Estresse Oxidativo , Fosforilação , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Biochemistry ; 55(23): 3285-302, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27218139

RESUMO

Apoptosis inducing factor (AIF) plays a well-defined role in controlling cell death but is also a critical factor for maintaining mitochondrial energy homeostasis; how these dueling activities are balanced has remained largely elusive. To identify new AIF binding partners that may define the continuum of AIF cellular regulation, a biochemical screen was performed that identified the mitochondrial phosphoglycerate mutase 5 (PGAM5) as an AIF associated factor. AIF binds both the short and long isoforms of PGAM5 and can reduce the ability of PGAM5 to control antioxidant responses. Transient overexpression of either PGAM5 isoform triggers caspase activation and cell death, and while AIF could reduce this caspase activation neither AIF expression nor caspase activity is required for PGAM5-mediated death. PGAM5 toxicity morphologically and biochemically resembles mitophagic cell death and is inhibited by the AIF binding protein X-linked inhibitor of apoptosis (XIAP) in a manner that depends on the ubiquitin ligase activity of XIAP. The phosphatase activity of PGAM5 was not required for cell death, and comparison of phosphatase activity between short and long PGAM5 isoforms suggested that only the long isoform is catalytically competent. This property correlated with an increased ability of PGAM5L to form dimers and/or higher order oligomers in intact cells compared to PGAM5S. Overall this study identifies an AIF/PGAM5/XIAP axis that can regulate PGAM5 activities related to the antioxidant response and mitophagy.


Assuntos
Fator de Indução de Apoptose/metabolismo , Apoptose , Ligases/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ubiquitinas/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Caspases/metabolismo , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Isoformas de Proteínas , Ubiquitinação
3.
BMC Cancer ; 16: 286, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27108222

RESUMO

BACKGROUND: Apoptosis-inducing factor (AIF), named for its involvement in cell death pathways, is a mitochondrial protein that regulates metabolic homeostasis. In addition to supporting the survival of healthy cells, AIF also plays a contributory role to the development of cancer through its enzymatic activity, and we have previously shown that AIF preferentially supports advanced-stage prostate cancer cells. Here we further evaluated the role of AIF in tumorigenesis by exploring its function in pancreatic cancer, a disease setting that most often presents at an advanced stage by the time of diagnosis. METHODS: A bioinformatics approach was first employed to investigate AIF mRNA transcript levels in pancreatic tumor specimens vs. normal tissues. AIF-deficient pancreatic cancer cell lines were then established via lentiviral infection. Immunoblot analysis was used to determine relative protein quantities within cells. Cell viability was measured by flow cytometry; in vitro and Matrigel™ growth/survival using Coulter™ counting and phase contrast microscopy; and glucose consumption in the absence and presence of Matrigel™ using spectrophotometric methods. RESULTS: Archival gene expression data revealed a modest elevation of AIF transcript levels in subsets of pancreatic tumor specimens, suggesting a possible role in disease progression. AIF expression was then suppressed in a panel of five pancreatic cancer cell lines that display diverse metabolic phenotypes. AIF ablation selectively crippled the growth of cells in vitro in a manner that directly correlated with the loss of mitochondrial respiratory chain subunits and altered glucose metabolism, and these effects were exacerbated in the presence of Matrigel™ substrate. This suggests a critical metabolic role for AIF to pancreatic tumorigenesis, while the spectrum of sensitivities to AIF ablation depends on basal cellular metabolic phenotypes. CONCLUSIONS: Altogether these data indicate that AIF supports the growth and survival of metabolically defined pancreatic cancer cells and that this metabolic function may derive from a novel mechanism so far undocumented in other cancer types.


Assuntos
Fator de Indução de Apoptose/genética , Carcinogênese/genética , Neoplasias Pancreáticas/genética , Apoptose/genética , Fator de Indução de Apoptose/antagonistas & inibidores , Fator de Indução de Apoptose/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Mensageiro/biossíntese , Transdução de Sinais/genética
4.
J Biol Chem ; 288(40): 28881-92, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23979357

RESUMO

TREX1 is an autonomous 3'-exonuclease that degrades DNA to prevent inappropriate immune activation. The TREX1 protein is composed of 314 amino acids; the N-terminal 242 amino acids contain the catalytic domain, and the C-terminal region (CTR) localizes TREX1 to the cytosolic compartment. In this study, we show that TREX1 modification by ubiquitination is controlled by a highly conserved sequence in the CTR to affect cellular localization. Transfection of TREX1 deletion constructs into human cells demonstrated that this sequence is required for ubiquitination at multiple lysine residues through a "non-canonical" ubiquitin linkage. A proteomic approach identified ubiquilin 1 as a TREX1 CTR-interacting protein, and this interaction was verified in vitro and in vivo. Cotransfection studies indicated that ubiquilin 1 localizes TREX1 to cytosolic punctate structures dependent upon the TREX1 CTR and lysines within the TREX1 catalytic core. Several TREX1 mutants linked to the autoimmune diseases Aicardi-Goutières syndrome and systemic lupus erythematosus that exhibit full catalytic function were tested for altered ubiquitin modification and cellular localization. Our data show that these catalytically competent disease-causing TREX1 mutants exhibit differential levels of ubiquitination relative to WT TREX1, suggesting a novel mechanism of dysfunction. Furthermore, these differentially ubiquitinated disease-causing mutants also exhibit altered ubiquilin 1 co-localization. Thus, TREX1 post-translational modification indicates an additional mechanism by which mutations disrupt TREX1 biology, leading to human autoimmune disease.


Assuntos
Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal , Doenças Autoimunes do Sistema Nervoso/metabolismo , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Lisina/metabolismo , Proteínas Mutantes/metabolismo , Malformações do Sistema Nervoso/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Relação Estrutura-Atividade
5.
J Biol Chem ; 287(52): 43862-75, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23118229

RESUMO

Apoptosis-inducing factor (AIF) promotes cell death yet also controls mitochondrial homeostasis and energy metabolism. It is unclear how these activities are coordinated, and the impact of AIF upon human disease, in particular cancer, is not well documented. In this study we have explored the contribution of AIF to the progression of prostate cancer. Analysis of archival gene expression data demonstrated that AIF transcript levels are elevated in human prostate cancer, and we found that AIF protein is increased in prostate tumors. Suppression of AIF expression in the prostate cancer cell lines LNCaP, DU145, and PC3 demonstrated that AIF does not contribute to cell toxicity via a variety of chemical death triggers, and growth under nutrient-rich conditions is largely unaffected by AIF ablation. However, under growth stress conditions, AIF depletion from DU145 and PC3 cell lines led to significant reductions in cell survival and growth that were not observed in LNCaP cells. Moreover AIF-deficient PC3 cells exhibited substantial reduction of tumorigenic growth in vivo. This reduced survival correlated with decreased expression of mitochondrial complex I protein subunits and concomitant changes in glucose metabolism. Finally, restoration of AIF-deficient PC3 cells with AIF variants demonstrated that the enzymatic activity of AIF is required for aggressive growth. Overall these studies show that AIF is an important factor for advanced prostate cancer cells and that through control of energy metabolism and redox balance, the enzymatic activity of AIF is critical for this support.


Assuntos
Fator de Indução de Apoptose/biossíntese , Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/enzimologia , Fator de Indução de Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Glucose/genética , Glucose/metabolismo , Humanos , Masculino , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Oxirredução , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transcrição Gênica/genética
6.
Biochemistry ; 50(51): 11084-96, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22103349

RESUMO

Apoptosis inducing factor (AIF) is a mediator of caspase-independent cell death that is also necessary for mitochondrial energy production. How these seemingly opposite cellular functions of AIF are controlled is poorly understood. X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of caspases that also regulates several caspase-independent signaling pathways. The RING domain of XIAP possesses E3 ubiquitin ligase activity, though the importance of this function to signal regulation remains incompletely defined. XIAP binds and ubiquitinates AIF, and in this study, we determined the functional consequences of XIAP-mediated AIF ubiquitination. Unlike canonical ubiquitination, XIAP-dependent AIF ubiquitination did not lead to proteasomal degradation of AIF. Experiments using ubiquitin mutants demonstrated that the XIAP-dependent ubiquitin linkage was not formed through the commonly used lysine 48, suggesting a noncanonical ubiquitin linkage is employed. Further studies demonstrated that only lysine 255 of AIF was a target of XIAP-dependent ubiquitination. Using recombinant AIF, we determined that mutating lysine 255 of AIF interferes with the ability of AIF not only to bind DNA but also to degrade chromatin in vitro. These data indicate that XIAP regulates the death-inducing activity of AIF through nondegradative ubiquitination, further defining the role of XIAP in controlling AIF and caspase-independent cell death pathways.


Assuntos
Fator de Indução de Apoptose/metabolismo , Cromatina/metabolismo , Lisina/metabolismo , Ubiquitinação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Substituição de Aminoácidos , Fator de Indução de Apoptose/química , Fator de Indução de Apoptose/genética , Sítios de Ligação , Núcleo Celular/química , Núcleo Celular/metabolismo , Sobrevivência Celular , Cromatina/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , NAD/metabolismo , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios RING Finger , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química
7.
Breast Cancer Res Treat ; 107(2): 235-42, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17453341

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase polycomb group (PcG) protein, which has been implicated in the process of cellular differentiation and cancer progression for both breast and prostate cancer. Although transcriptional repression by histone modification appears to contribute to the process of cellular differentiation, it is unclear what mediates the specificity of PcG proteins. Since EZH2 requires a binding partner for its histone methyltransferase activity, we surmised that evaluating interacting proteins might shed light on how the activity of EZH2 is regulated. Here we describe the identification of a novel binding partner of EZH2, the repressor of estrogen receptor activity (REA). REA functions as a transcriptional corepressor of the estrogen receptor and can potentiate the effect of anti-estrogens. REA expression levels have also previously been associated with the degree of differentiation of human breast cancers. We show here that EZH2 can also mediate the repression of estrogen-dependent transcription, and that moreover, the ability of both REA and EZH2 to repress estrogen-dependent transcription are mutually dependent. These data suggest that EZH2 may be recruited to specific target genes by its interaction with the estrogen receptor corepressor REA. The identification of a novel interaction between EZH2 and REA, two transcription factors that have been linked to breast cancer carcinogenesis, may lead to further insights into the process of deregulated gene expression in breast cancer.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Receptores de Estrogênio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Diferenciação Celular , Linhagem Celular Tumoral , Progressão da Doença , Elementos Facilitadores Genéticos , Proteína Potenciadora do Homólogo 2 de Zeste , Estradiol/metabolismo , Estrogênios/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proibitinas , Interferência de RNA , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transcrição Gênica
8.
Colloids Surf B Biointerfaces ; 163: 225-235, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304437

RESUMO

Often cancer relapses after an initial response to chemotherapy because of the tumor's heterogeneity and the presence of progenitor stem cells, which can renew. To overcome drug resistance, metastasis, and relapse in cancer, a promising approach is the inhibition of cancer stemness. In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG1900-S-S-PLA6000 and the N3-PEG1900-PLA6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N3-PEG1900-PLA6000 polymer via a Cu2+ catalyzed "Click" reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG1900-S-S-PLA6000, 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells.


Assuntos
Benzofuranos/farmacologia , Endocitose/efeitos dos fármacos , Naftoquinonas/farmacologia , Células-Tronco Neoplásicas/patologia , Oligopeptídeos/química , Polímeros/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reação de Cicloadição , Citometria de Fluxo , Humanos , Hidrodinâmica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neuropilina-1/metabolismo , Polímeros/síntese química
9.
Oncotarget ; 9(12): 10457-10469, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535819

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to a late diagnosis and poor response to available treatments. There is a need to identify complementary treatment strategies that will enhance the efficacy and reduce the toxicity of currently used therapeutic approaches. We investigated the ability of a known ROS inducer, piperlongumine (PL), to complement the modest anti-cancer effects of the approved chemotherapeutic agent gemcitabine (GEM) in PDAC cells in vitro and in vivo. PDAC cells treated with PL + GEM showed reduced cell viability, clonogenic survival, and growth on Matrigel compared to control and individually-treated cells. Nude mice bearing orthotopically implanted MIA PaCa-2 cells treated with both PL (5 mg/kg) and GEM (25 mg/kg) had significantly lower tumor weight and volume compared to control and single agent-treated mice. RNA sequencing (RNA-Seq) revealed that PL + GEM resulted in significant changes in p53-responsive genes that play a role in cell death, cell cycle, oxidative stress, and DNA repair pathways. Cell culture assays confirmed PL + GEM results in elevated ROS levels, arrests the cell cycle in the G0/G1 phase, and induces PDAC cell death. We propose a mechanism for the complementary anti-tumor effects of PL and GEM in PDAC cells through elevation of ROS and transcription of cell cycle arrest and cell death-associated genes. Collectively, our results suggest that PL has potential to be combined with GEM to more effectively treat PDAC.

10.
Mol Cell Biol ; 24(16): 7003-14, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15282301

RESUMO

X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-x(L). Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-x(L)-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.


Assuntos
Apoptose/fisiologia , Inibidores Enzimáticos/metabolismo , Proteínas/metabolismo , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/metabolismo , Caspase 3 , Caspase 8 , Caspase 9 , Inibidores de Caspase , Caspases/metabolismo , Sobrevivência Celular , Citocromos c/metabolismo , Ativação Enzimática , Etoposídeo/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células Jurkat , Potenciais da Membrana/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Proteínas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteína bcl-X , Receptor fas/metabolismo
11.
Virology ; 456-457: 205-19, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24889240

RESUMO

Adenovirus inundates the productively infected cell with linear, double-stranded DNA and an abundance of single-stranded DNA. The cellular response to this stimulus is antagonized by the adenoviral E1B and E4 early genes. A mutant group C adenovirus that fails to express the E1B-55K and E4orf3 genes is unable to suppress the DNA-damage response. Cells infected with this double-mutant virus display significant morphological heterogeneity at late times of infection and frequently contain fragmented nuclei. Nuclear fragmentation was due to the translocation of apoptosis inducing factor (AIF) from the mitochondria into the nucleus. The release of AIF was dependent on active poly(ADP-ribose) polymerase-1 (PARP-1), which appeared to be activated by viral DNA replication. Nuclear fragmentation did not occur in AIF-deficient cells or in cells treated with a PARP-1 inhibitor. The E1B-55K or E4orf3 proteins independently prevented nuclear fragmentation subsequent to PARP-1 activation, possibly by altering the intracellular distribution of PAR-modified proteins.


Assuntos
Proteínas E1B de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Fator de Indução de Apoptose/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Proteínas Oncogênicas/metabolismo , Replicação Viral , Animais , Linhagem Celular , DNA Viral/metabolismo , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo
12.
13.
J Biol Chem ; 284(21): 14029-39, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19286655

RESUMO

Mismatch repair (MMR) proteins participate in cytotoxicity induced by certain DNA damage-inducing agents, including cisplatin (cis-diamminedichloroplatinum(II), CDDP), a cancer chemotherapeutic drug utilized clinically to treat a variety of malignancies. MMR proteins have been demonstrated to bind to CDDP-DNA adducts and initiate MMR protein-dependent cell death in cells treated with CDDP; however, the molecular events underlying this death remain unclear. As MMR proteins have been suggested to be important in clinical responses to CDDP, a clear understanding of MMR protein-dependent, CDDP-induced cell death is critical. In this report, we demonstrate MMR protein-dependent relocalization of cytochrome c to the cytoplasm and cleavage of caspase-9, caspase-3, and poly(ADP-ribose) polymerase upon treatment of cells with CDDP. Chemical inhibition of caspases specifically attenuates CDDP/MMR protein-dependent cytotoxicity, suggesting that a caspase-dependent signaling mechanism is required for the execution of this cell death. p53 protein levels were up-regulated independently of MMR protein status, suggesting that p53 is not a mediator of MMR-dependent, CDDP-induced death. This work is the first indication of a required signaling mechanism in CDDP-induced, MMR protein-dependent cytotoxicity, which can be uncoupled from other CDDP response pathways, and defines a critical contribution of MMR proteins to the control of cell death.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/deficiência , Proteína 2 Homóloga a MutS/deficiência , Transdução de Sinais/efeitos dos fármacos , Inibidores de Caspase , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Concentração Inibidora 50 , Proteína 2 Homóloga a MutS/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Proteases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Mol Cell Biol ; 28(1): 237-47, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17967870

RESUMO

X-linked inhibitor of apoptosis (XIAP) is an inhibitor of apoptotic cell death that protects cells by caspase-dependent and independent mechanisms. In a screen for molecules that participate with XIAP in regulating cellular activities, we identified apoptosis-inducing factor (AIF) as an XIAP binding protein. Baculoviral IAP repeat 2 of XIAP is sufficient for the XIAP/AIF interaction, which is disrupted by Smac/DIABLO. In healthy cells, mature human AIF lacks only the first 54 amino acids, differing significantly from the apoptotic form, which lacks the first 102 amino-terminal residues. Fluorescence complementation and immunoprecipitation experiments revealed that XIAP interacts with both AIF forms. AIF was found to be a target of XIAP-mediated ubiquitination under both normal and apoptotic conditions, and an E3 ubiquitin ligase-deficient XIAP variant displayed a more robust interaction with AIF. Expression of either XIAP or AIF attenuated both basal and antimycin A-stimulated levels of reactive oxygen species (ROS), and when XIAP and AIF were expressed in combination, a cumulative decrease in ROS was observed. These results identify AIF as a new XIAP binding partner and indicate a role for XIAP in regulating cellular ROS.


Assuntos
Fator de Indução de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Sequência de Aminoácidos , Apoptose , Fator de Indução de Apoptose/química , Caspases/metabolismo , Linhagem Celular , Deleção de Genes , Humanos , Dados de Sequência Molecular , Ligação Proteica , Ubiquitinação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
15.
Mol Cell ; 21(6): 775-85, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16543147

RESUMO

X-linked inhibitor of apoptosis (XIAP), known primarily for its caspase inhibitory properties, has recently been shown to interact with and regulate the levels of COMMD1, a protein associated with a form of canine copper toxicosis. Here, we describe a role for XIAP in copper metabolism. We find that XIAP levels are greatly reduced by intracellular copper accumulation in Wilson's disease and other copper toxicosis disorders and in cells cultured under high copper conditions. Elevated copper levels result in a profound, reversible conformational change in XIAP due to the direct binding of copper to XIAP, which accelerates its degradation and significantly decreases its ability to inhibit caspase-3. This results in a lowering of the apoptotic threshold, sensitizing the cell to apoptosis. These data provide an unsuspected link between copper homeostasis and the regulation of cell death through XIAP and may contribute to the pathophysiology of copper toxicosis disorders.


Assuntos
Proteínas de Transporte/metabolismo , Cobre/intoxicação , Degeneração Hepatolenticular/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Apoptose , Caspase 3 , Caspases/fisiologia , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Modelos Biológicos , Conformação Proteica , Transdução de Sinais , Transfecção , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/fisiologia
16.
J Biol Chem ; 280(23): 22222-32, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15799966

RESUMO

MURR1 is a multifunctional protein that inhibits nuclear factor kappaB (NF-kappaB), a transcription factor with pleiotropic functions affecting innate and adaptive immunity, apoptosis, cell cycle regulation, and oncogenesis. Here we report the discovery of a new family of proteins with homology to MURR1. These proteins form multimeric complexes and were identified in a biochemical screen for MURR1-associated factors. The family is defined by the presence of a conserved and unique motif termed the COMM (copper metabolism gene MURR1) domain, which functions as an interface for protein-protein interactions. Like MURR1, several of these factors also associate with and inhibit NF-kappaB. The proteins designated as COMMD or COMM domain containing 1-10 are extensively conserved in multicellular eukaryotic organisms and define a novel family of structural and functional homologs of MURR1. The prototype of this family, MURR1/COMMD1, suppresses NF-kappaB not by affecting nuclear translocation or binding of NF-kappaB to cognate motifs; rather, it functions in the nucleus by affecting the association of NF-kappaB with chromatin.


Assuntos
Proteínas/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Apoptose , Proteínas de Transporte , Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Glutationa Transferase/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Luciferases/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , NF-kappa B/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Transfecção
17.
J Biol Chem ; 280(12): 11059-66, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15653686

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor alpha family of cytokines that preferentially induces apoptosis in transformed cells, making it a promising cancer therapy. However, many neoplasms are resistant to TRAIL-induced apoptosis by mechanisms that are poorly understood. We demonstrate that the expression of the small heat shock protein alpha B-crystallin (but not other heat shock proteins or apoptosis-regulating proteins) correlates with TRAIL resistance in a panel of human cancer cell lines. Stable expression of wild-type alpha B-crystallin, but not a pseudophosphorylation mutant impaired in its assembly and chaperone function, protects cancer cells from TRAIL-induced caspase-3 activation and apoptosis in vitro. Furthermore, selective inhibition of alpha B-crystallin expression by RNA interference sensitizes cancer cells to TRAIL. In addition, wild-type alpha B-crystallin promotes xenograft tumor growth and inhibits TRAIL-induced apoptosis in vivo in nude mice, whereas a pseudophosphorylation alpha B-crystallin mutant impaired in its anti-apoptotic function inhibits xenograft tumor growth. Collectively, these findings indicate that alpha B-crystallin is a novel regulator of TRAIL-induced apoptosis and tumor growth. Moreover, these results demonstrate that targeted inhibition of alpha B-crystallin promotes TRAIL-induced apoptosis, thereby suggesting a novel strategy to overcome TRAIL resistance in cancer.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Caspase , Glicoproteínas de Membrana/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Cadeia B de alfa-Cristalina/fisiologia , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/patologia , Caspase 3 , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Interferência de RNA , Ligante Indutor de Apoptose Relacionado a TNF
18.
Biochemistry ; 41(1): 8-14, 2002 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-11771997

RESUMO

We have extended the use of stopped-flow mixing and fluorescence anisotropy detection to investigate in real-time the effects of ErbB2 coexpression on the kinetic interactions of epidermal growth factor (EGF) with the EGF receptor. Using stable 32D-derived cell lines expressing both the EGF receptor and ErbB2, and fluorescein-labeled H22Y murine EGF (F-EGF), a series of association and dissociation experiments were performed in which the kinetic interaction of F-EGF with cells was monitored by observing time-dependent changes in fluorescence anisotropy following rapid mixing. Data were collected at various concentrations of F-EGF and multiple cell densities, using cells that express similar levels of the EGF receptor but different levels of ErbB2, and then analyzed by fitting to a two independent receptor-class model using global analysis techniques. The recovered kinetic parameters indicated that the coexpression of ErbB2 had relatively modest effects on recovered rate constants and calculated K(d) values, but a significant effect on the fraction of receptors associated with the high-affinity receptor class. This effect on the fraction of high-affinity receptors depended on the relative expression of ErbB2, as higher ErbB2 expression levels correlated with a larger fraction of high-affinity receptors. Further, the increase in the fraction of high-affinity receptors due to the presence of ErbB2 occurred without any change in the total number of EGF binding sites per cell. Thus, we have identified modulation of the relative populations of high- and low-affinity classes of EGF receptors as a consequence of coexpression of ErbB2 with the EGF receptor.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Genes erbB-2/fisiologia , Animais , Anisotropia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Fator de Crescimento Epidérmico/química , Fluorescência , Cinética , Ligantes , Camundongos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Transfecção , Transformação Genética
19.
J Recept Signal Transduct Res ; 22(1-4): 357-71, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12503627

RESUMO

We have developed a system for extending stopped-flow analysis to the kinetics of ligand capture and release by cell surface receptors in living cells. While most mammalian cell lines cannot survive the shear forces associated with turbulent, stopped-flow mixing, we determined that 32D cells, murine hematopoietic precursor cells, can survive rapid mixing, even at the high flow rates necessary to achieve dwell times as short as 10 msec. In addition, 32D cells do not express any member of the ErbB family of receptors, providing a null background for studying this receptor family. We have established a series of stable, monoclonal 32D-derived cell lines that express the epidermal growth factor (EGF) receptor, ErbB2, or a combination of both at different ratios. Using these cell lines and a homogeneous fluorescent derivative of H22Y-mEGF modified with fluorescein at the amino terminus (F-EGF), we have measured association and dissociation of F-EGF with its receptor. Association was measured by following the time-dependent changes in fluorescence anisotropy after rapidly mixing cells at various cell densities with F-EGF at 1-15nM. Dissociation was measured both by chase experiments in which unlabeled EGF was mixed with cells pre-equilibrated with F-EGF or by dilution of cells equilibrated with F-EGF. Comparison of these dissociation experiments demonstrated that little or no ligand-induced dissociation occurs in the chase dissociation experiments. For each cell line, data from a series of association experiments and dilution dissociation experiments were subjected to global analysis using a two independent receptor-class model. Our analysis is consistent with the presence of two distinct receptor populations, even in cells bearing only the EGF receptor. Increasing the relative expression of ErbB2 leads to an increase in the fraction of high affinity class receptors observed, without altering the total number of EGF binding sites.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Polarização de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Anisotropia , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Células-Tronco Hematopoéticas/metabolismo , Humanos , Ligantes , Ligação Proteica , Receptor ErbB-2/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes , Estresse Mecânico , Transfecção
20.
Exp Cell Res ; 282(2): 121-31, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12531698

RESUMO

To investigate the intrinsic activities of the epidermal growth factor receptor and the role of its kinase domain in these functions within a cellular environment lacking endogenous ErbB protein expression, wild-type EGF receptor (WT-EGFR) and two kinase-impaired mutants, D813A and K721R, were expressed in 32D murine hematopoietic cells, a line which is normally dependent on interleukin 3 (IL3) for growth and survival. Addition of EGF in the absence of IL3 stimulates receptor autophosphorylation and, in the presence of serum, mitosis in cells expressing WT-EGFR, but not in cells expressing D813A or K721R. Unexpectedly, cells expressing WT-EGFR or K721R exhibited IL3-independent survival in the presence of fetal bovine serum; parental 32D cells and cells expressing D813A did not survive, apparently undergoing apoptosis in the absence of IL3, whether or not serum was present. Addition of EGF did not prevent the apoptosis of WT-EGFR or K721R cells in serum-free medium. Activation of Akt was not necessary to mediate the prosurvival activity of EGF receptor expression. These results suggest that the EGF receptor can mediate the prevention of apoptosis independently of both receptor-ligand binding and receptor kinase activity, and this activity is disrupted by the D813A mutation.


Assuntos
Receptores ErbB/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas Serina-Treonina Quinases , Animais , Apoptose , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/química , Receptores ErbB/genética , Células-Tronco Hematopoéticas/química , Interleucina-3/farmacologia , Ligantes , Camundongos , Mitose/efeitos dos fármacos , Mutação , Fosforilação , Fosfotransferases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA