RESUMO
Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.
Assuntos
Pesquisa Biomédica , Genômica , Animais , Análise Mutacional de DNA , Bases de Dados Genéticas , Doença/genética , Projeto Genoma Humano , Humanos , Disseminação de Informação , Modelos AnimaisRESUMO
How cell-to-cell copy number alterations that underpin genomic instability1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer2, remains understudied. Here, by applying scaled single-cell whole-genome sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells.
Assuntos
Genômica , Mutação , Neoplasias Ovarianas , Análise de Célula Única , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Filogenia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
High-grade serous ovarian cancer (HGSOC) is an archetypal cancer of genomic instability1-4 patterned by distinct mutational processes5,6, tumour heterogeneity7-9 and intraperitoneal spread7,8,10. Immunotherapies have had limited efficacy in HGSOC11-13, highlighting an unmet need to assess how mutational processes and the anatomical sites of tumour foci determine the immunological states of the tumour microenvironment. Here we carried out an integrative analysis of whole-genome sequencing, single-cell RNA sequencing, digital histopathology and multiplexed immunofluorescence of 160 tumour sites from 42 treatment-naive patients with HGSOC. Homologous recombination-deficient HRD-Dup (BRCA1 mutant-like) and HRD-Del (BRCA2 mutant-like) tumours harboured inflammatory signalling and ongoing immunoediting, reflected in loss of HLA diversity and tumour infiltration with highly differentiated dysfunctional CD8+ T cells. By contrast, foldback-inversion-bearing tumours exhibited elevated immunosuppressive TGFß signalling and immune exclusion, with predominantly naive/stem-like and memory T cells. Phenotypic state associations were specific to anatomical sites, highlighting compositional, topological and functional differences between adnexal tumours and distal peritoneal foci. Our findings implicate anatomical sites and mutational processes as determinants of evolutionary phenotypic divergence and immune resistance mechanisms in HGSOC. Our study provides a multi-omic cellular phenotype data substrate from which to develop and interpret future personalized immunotherapeutic approaches and early detection research.
Assuntos
Evasão da Resposta Imune , Mutação , Neoplasias Ovarianas , Feminino , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/imunologia , Cistadenocarcinoma Seroso/patologia , Recombinação Homóloga , Evasão da Resposta Imune/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Microambiente Tumoral , Fator de Crescimento Transformador beta , Genes BRCA1 , Genes BRCA2RESUMO
Progress in defining genomic fitness landscapes in cancer, especially those defined by copy number alterations (CNAs), has been impeded by lack of time-series single-cell sampling of polyclonal populations and temporal statistical models1-7. Here we generated 42,000 genomes from multi-year time-series single-cell whole-genome sequencing of breast epithelium and primary triple-negative breast cancer (TNBC) patient-derived xenografts (PDXs), revealing the nature of CNA-defined clonal fitness dynamics induced by TP53 mutation and cisplatin chemotherapy. Using a new Wright-Fisher population genetics model8,9 to infer clonal fitness, we found that TP53 mutation alters the fitness landscape, reproducibly distributing fitness over a larger number of clones associated with distinct CNAs. Furthermore, in TNBC PDX models with mutated TP53, inferred fitness coefficients from CNA-based genotypes accurately forecast experimentally enforced clonal competition dynamics. Drug treatment in three long-term serially passaged TNBC PDXs resulted in cisplatin-resistant clones emerging from low-fitness phylogenetic lineages in the untreated setting. Conversely, high-fitness clones from treatment-naive controls were eradicated, signalling an inversion of the fitness landscape. Finally, upon release of drug, selection pressure dynamics were reversed, indicating a fitness cost of treatment resistance. Together, our findings define clonal fitness linked to both CNA and therapeutic resistance in polyclonal tumours.
Assuntos
Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Células Clonais/patologia , Feminino , Aptidão Genética , Humanos , Camundongos , Modelos Estatísticos , Transplante de Neoplasias , Proteína Supressora de Tumor p53/genética , Sequenciamento Completo do GenomaRESUMO
As large-scale genomic screening becomes increasingly prevalent, understanding the influence of actionable results on healthcare utilization is key to estimating the potential long-term clinical impact. The eMERGE network sequenced individuals for actionable genes in multiple genetic conditions and returned results to individuals, providers, and the electronic health record. Differences in recommended health services (laboratory, imaging, and procedural testing) delivered within 12 months of return were compared among individuals with pathogenic or likely pathogenic (P/LP) findings to matched individuals with negative findings before and after return of results. Of 16,218 adults, 477 unselected individuals were found to have a monogenic risk for arrhythmia (n = 95), breast cancer (n = 96), cardiomyopathy (n = 95), colorectal cancer (n = 105), or familial hypercholesterolemia (n = 86). Individuals with P/LP results more frequently received services after return (43.8%) compared to before return (25.6%) of results and compared to individuals with negative findings (24.9%; p < 0.0001). The annual cost of qualifying healthcare services increased from an average of $162 before return to $343 after return of results among the P/LP group (p < 0.0001); differences in the negative group were non-significant. The mean difference-in-differences was $149 (p < 0.0001), which describes the increased cost within the P/LP group corrected for cost changes in the negative group. When stratified by individual conditions, significant cost differences were observed for arrhythmia, breast cancer, and cardiomyopathy. In conclusion, less than half of individuals received billed health services after monogenic return, which modestly increased healthcare costs for payors in the year following return.
Assuntos
Neoplasias da Mama , Cardiomiopatias , Adulto , Humanos , Feminino , Estudos Prospectivos , Aceitação pelo Paciente de Cuidados de Saúde , Arritmias Cardíacas , Neoplasias da Mama/genética , Cardiomiopatias/genéticaRESUMO
Applications of genomics to population screening are expanding in the United States and internationally. Many of these programs are being implemented in the context of healthcare systems, mostly in a clinical research setting, but there are some emerging examples of clinical models. This review examines these genomic population screening programs to identify common features and differences in screened conditions, genomic technology employed, approach to results disclosure, health outcomes, financial models, and sustainability. The diversity of approaches provides opportunities to learn and better understand the optimal approach to implementation based on the contextual setting.
Assuntos
Genômica , Medicina de Precisão , Humanos , Estados UnidosRESUMO
The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.
Assuntos
Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Genômica/métodos , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Genótipo , Humanos , Mutação/genética , FenótipoRESUMO
This white paper was prepared by the Global Alliance for Genomics and Health Regulatory and Ethics Work Stream's Pediatric Task Team to review and provide perspective with respect to ethical, legal, and social issues regarding the return of secondary pharmacogenomic variants in children who have a serious disease or developmental disorder and are undergoing exome or genome sequencing to identify a genetic cause of their condition. We discuss actively searching for and reporting pharmacogenetic/genomic variants in pediatric patients, different methods of returning secondary pharmacogenomic findings to the patient/parents and/or treating clinicians, maintaining these data in the patient's health record over time, decision supports to assist using pharmacogenetic results in future treatment decisions, and sharing information in public databases to improve the clinical interpretation of pharmacogenetic variants identified in other children. We conclude by presenting a series of points to consider for clinicians and policymakers regarding whether, and under what circumstances, routine screening and return of pharmacogenomic variants unrelated to the indications for testing is appropriate in children who are undergoing genome-wide sequencing to assist in the diagnosis of a suspected genetic disease.
Assuntos
Farmacogenética , Variantes Farmacogenômicos , Humanos , Criança , Genômica , Mapeamento Cromossômico , ExomaRESUMO
INTRODUCTION: Genomic screening to identify individuals with Lynch Syndrome (LS) and those with a high polygenic risk score (PRS) promises to personalize Colorectal Cancer (CRC) screening. Understanding its clinical and economic impact is needed to inform screening guidelines and reimbursement policies. METHODS: We developed a Markov model to simulate individuals over a lifetime. We compared LS+PRS genomic screening to standard of care (SOC) for a cohort of US adults at age 30. The Markov model included health states of "no CRC", CRC stages (A-D) and death. We estimated incidence, mortality, and discounted economic outcomes of the population under different interventions. RESULTS: Screening 1000 individuals for LS+PRS resulted in 1.36 fewer CRC cases and 0.65 fewer deaths compared to SOC. The incremental cost-effectiveness ratio (ICER) was $124,415 per quality-adjusted life-year (QALY); screening had a 69% probability of being cost-effective using a willingness to pay threshold of $150,000/QALY. Setting the PRS threshold at the 90th percentile of the LS+PRS screening program to define individuals at high risk was most likely to be cost-effective compared to 95th, 85th, and 80th percentiles. CONCLUSION: Population-level LS+PRS screening is marginally cost-effective and a threshold of 90th percentile is more likely to be cost-effective than other thresholds.
RESUMO
PURPOSE: This study compared Lynch syndrome universal tumor screening (UTS) across multiple health systems (some of which had 2 or more distinct UTS programs) to understand multilevel factors that may affect the successful implementation of complex programs. METHODS: Data from 66 stakeholder interviews were used to conduct multivalue coincidence analysis and identify key factors that consistently make a difference in whether UTS programs were implemented and optimized at the system level. RESULTS: The selected coincidence analysis model revealed combinations of conditions that distinguish 4 optimized UTS programs, 10 nonoptimized programs, and 4 systems with no program. Fully optimized UTS programs had both a maintenance champion and a positive inner setting. Two independent paths were unique to nonoptimized programs: (1) positive attitudes and a mixed inner setting or (2) limited planning and engaging among stakeholders. Negative views about UTS evidence or lack of knowledge about UTS led to a lack of planning and engaging, which subsequently prevented program implementation. CONCLUSION: The model improved our understanding of program implementation in health care systems and informed the creation of a toolkit to guide UTS implementation, optimization, and changes. Our findings and toolkit may serve as a use case to increase the successful implementation of other complex precision health programs.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Detecção Precoce de Câncer , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Detecção Precoce de Câncer/métodos , Testes Genéticos/métodos , Programas de Rastreamento/métodosRESUMO
PURPOSE: The ClinGen Actionability Working Group (AWG) developed an evidence-based framework to generate actionability reports and scores of gene-condition pairs in the context of secondary findings from genome sequencing. Here we describe the expansion of the framework to include actionability assertions. METHODS: Initial development of the actionability rubric was based on previously scored adult gene-condition pairs and individual expert evaluation. Rubric refinement was iterative and based on evaluation, feedback, and discussion. The final rubric was pragmatically evaluated via integration into actionability assessments for 27 gene-condition pairs. RESULTS: The resulting rubric has a 4-point scale (limited, moderate, strong, and definitive) and uses the highest-scoring outcome-intervention pair of each gene-condition pair to generate a preliminary assertion. During AWG discussions, predefined criteria and factors guide discussion to produce a consensus assertion for a gene-condition pair, which may differ from the preliminary assertion. The AWG has retrospectively generated assertions for all previously scored gene-condition pairs and are prospectively asserting on gene-condition pairs under assessment, having completed over 170 adult and 188 pediatric gene-condition pairs. CONCLUSION: The AWG expanded its framework to provide actionability assertions to enhance the clinical value of their resources and increase their utility as decision aids regarding return of secondary findings.
Assuntos
Medicina Baseada em Evidências , Humanos , Medicina Baseada em Evidências/métodos , Testes Genéticos/métodos , Achados Incidentais , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Malignant hyperthermia (MH) susceptibility is a heritable musculoskeletal disorder that can present as a potentially fatal hypermetabolic response to triggering anesthesia agents. Genomic screening for variants in MH-associated genes RYR1 and CACNA1S provides an opportunity to prevent morbidity and mortality. There are limited outcomes data from disclosing variants in RYR1, the most common MH susceptibility gene, in unselected populations. The authors sought to identify the rate of MH features or fulminant episodes after triggering agent exposure in an unselected population undergoing genomic screening including actionable RYR1 variants. METHODS: The MyCode Community Health Initiative by Geisinger (USA) is an electronic health record-linked biobank that discloses pathogenic and likely pathogenic variants in clinically actionable genes to patient-participants. Available electronic anesthesia and ambulatory records for participants with actionable RYR1 results returned through December 2020 were evaluated for pertinent findings via double-coded chart reviews and reconciliation. Descriptive statistics for observed phenotypes were calculated. RESULTS: One hundred fifty-two participants had an actionable RYR1 variant disclosed during the study period. None had previous documented genetic testing for MH susceptibility; one had previous contracture testing diagnosing MH susceptibility. Sixty-eight participants (44.7%) had anesthesia records documenting triggering agent exposure during at least one procedure. None received dantrolene treatment or had documented muscle rigidity, myoglobinuria, hyperkalemia, elevated creatine kinase, severe myalgia, or tea-colored urine. Of 120 possibly MH-related findings (postoperative intensive care unit admissions, hyperthermia, arterial blood gas evaluation, hypercapnia, or tachycardia), 112 (93.3%) were deemed unlikely to be MH events; 8 (6.7%) had insufficient records to determine etiology. CONCLUSIONS: Results demonstrate a low frequency of classic intraanesthetic hypermetabolic phenotypes in an unselected population with actionable RYR1 variants. Further research on the actionability of screening for MH susceptibility in unselected populations, including economic impact, predictors of MH episodes, and expanded clinical phenotypes, is necessary.
Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Testes Genéticos , Hipertermia Maligna/diagnóstico , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Metagenômica , Mutação , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/genéticaRESUMO
BACKGROUND: The cost-effectiveness of screening the U.S. population for Centers for Disease Control and Prevention (CDC) Tier 1 genomic conditions is unknown. OBJECTIVE: To estimate the cost-effectiveness of simultaneous genomic screening for Lynch syndrome (LS), hereditary breast and ovarian cancer syndrome (HBOC), and familial hypercholesterolemia (FH). DESIGN: Decision analytic Markov model. DATA SOURCES: Published literature. TARGET POPULATION: Separate age-based cohorts (ages 20 to 60 years at time of screening) of racially and ethnically representative U.S. adults. TIME HORIZON: Lifetime. PERSPECTIVE: U.S. health care payer. INTERVENTION: Population genomic screening using clinical sequencing with a restricted panel of high-evidence genes, cascade testing of first-degree relatives, and recommended preventive interventions for identified probands. OUTCOME MEASURES: Incident breast, ovarian, and colorectal cancer cases; incident cardiovascular events; quality-adjusted survival; and costs. RESULTS OF BASE-CASE ANALYSIS: Screening 100 000 unselected 30-year-olds resulted in 101 (95% uncertainty interval [UI], 77 to 127) fewer overall cancer cases and 15 (95% UI, 4 to 28) fewer cardiovascular events and an increase of 495 quality-adjusted life-years (QALYs) (95% UI, 401 to 757) at an incremental cost of $33.9 million (95% UI, $27.0 million to $41.1 million). The incremental cost-effectiveness ratio was $68 600 per QALY gained (95% UI, $41 800 to $88 900). RESULTS OF SENSITIVITY ANALYSIS: Screening 30-, 40-, and 50-year-old cohorts was cost-effective in 99%, 88%, and 19% of probabilistic simulations, respectively, at a $100 000-per-QALY threshold. The test costs at which screening 30-, 40-, and 50-year-olds reached the $100 000-per-QALY threshold were $413, $290, and $166, respectively. Variant prevalence and adherence to preventive interventions were also highly influential parameters. LIMITATIONS: Population averages for model inputs, which were derived predominantly from European populations, vary across ancestries and health care environments. CONCLUSION: Population genomic screening with a restricted panel of high-evidence genes associated with 3 CDC Tier 1 conditions is likely to be cost-effective in U.S. adults younger than 40 years if the testing cost is relatively low and probands have access to preventive interventions. PRIMARY FUNDING SOURCE: National Human Genome Research Institute.
Assuntos
Doenças Cardiovasculares , Hiperlipoproteinemia Tipo II , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Análise de Custo-Efetividade , Análise Custo-Benefício , Metagenômica , Anos de Vida Ajustados por Qualidade de Vida , Programas de RastreamentoRESUMO
Response inhibition difficulties are reported in individuals with eating disorders (EDs), anxiety, and depression. Although ED symptoms and internalizing symptoms co-occur in preadolescence, there is limited research examining associations between these symptoms and response inhibition in this age group. This study is the first to investigate the associations between behavioral and neural markers of response inhibition, disordered eating (DE), and internalizing symptoms in a community sample of preadolescents. Forty-eight children (M age = 10.95 years, 56.3% male) completed a Go/NoGo task, whereas electroencephalography was recorded. Self-report measures of DE and internalizing symptoms were collected. Higher levels of anxiety and depression were associated with neural markers of suboptimal response inhibition (attenuated P3NoGo amplitudes) in preadolescence. In contrast, higher levels of depression were associated with greater response inhibition at a behavioral level. These findings suggest internalizing symptoms in preadolescence are associated with P3-indexed difficulties in evaluation and monitoring, but these are not sufficient to disrupt behavioral performance on a response inhibition task. This pattern may reflect engagement of compensatory processes to support task performance. DE was not significantly associated with response inhibition, suggesting that difficulties in response inhibition may only be reliably observed in more chronic and severe DE and ED presentations.
Assuntos
Ansiedade , Transtornos da Alimentação e da Ingestão de Alimentos , Criança , Masculino , Humanos , Feminino , Transtornos de Ansiedade , EletroencefalografiaRESUMO
BACKGROUND & AIMS: While normal human liver is thought to be generally quiescent, clonal hepatocyte expansions have been observed, though neither their cellular source nor their expansion dynamics have been determined. Knowing the hepatocyte cell of origin, and their subsequent dynamics and trajectory within the human liver will provide an important basis to understand disease-associated dysregulation. METHODS: Herein, we use in vivo lineage tracing and methylation sequence analysis to demonstrate normal human hepatocyte ancestry. We exploit next-generation mitochondrial sequencing to determine hepatocyte clonal expansion dynamics across spatially distinct areas of laser-captured, microdissected, clones, in tandem with computational modelling in morphologically normal human liver. RESULTS: Hepatocyte clones and rare SOX9+ hepatocyte progenitors commonly associate with portal tracts and we present evidence that clones can lineage-trace with cholangiocytes, indicating the presence of a bipotential common ancestor at this niche. Within clones, we demonstrate methylation CpG sequence diversity patterns indicative of periportal not pericentral ancestral origins, indicating a portal to central vein expansion trajectory. Using spatial analysis of mitochondrial DNA variants by next-generation sequencing coupled with mathematical modelling and Bayesian inference across the portal-central axis, we demonstrate that patterns of mitochondrial DNA variants reveal large numbers of spatially restricted mutations in conjunction with limited numbers of clonal mutations. CONCLUSIONS: These datasets support the existence of a periportal progenitor niche and indicate that clonal patches exhibit punctuated but slow growth, then quiesce, likely due to acute environmental stimuli. These findings crucially contribute to our understanding of hepatocyte dynamics in the normal human liver. IMPACT AND IMPLICATIONS: The liver is mainly composed of hepatocytes, but we know little regarding the source of these cells or how they multiply over time within the disease-free human liver. In this study, we determine a source of new hepatocytes by combining many different lab-based methods and computational predictions to show that hepatocytes share a common cell of origin with bile ducts. Both our experimental and computational data also demonstrate hepatocyte clones are likely to expand in slow waves across the liver in a specific trajectory, but often lie dormant for many years. These data show for the first time the expansion dynamics of hepatocytes in normal liver and their cell of origin enabling the accurate measurment of changes to their dynamics that may lead to liver disease. These findings are important for researchers determining cancer risk in human liver.
Assuntos
Hepatopatias , Nicho de Células-Tronco , Humanos , Teorema de Bayes , Diferenciação Celular , Hepatócitos/fisiologia , Fígado , DNA MitocondrialRESUMO
Secondary genomic findings are increasingly being returned to individuals as opportunistic screening results. A secondary finding offers the chance to identify and mitigate disease that may otherwise be unrecognized in an individual. As a form of screening, secondary findings must be considered differently from sequencing results in a diagnostic setting. For these reasons, clinicians should employ an evaluation and long-term management strategy that accounts for both the increased disease risk associated with a secondary finding and the lower positive predictive value of a screening result compared to an indication-based testing result. Here we describe an approach to the clinical evaluation and management of an individual who presents with a secondary finding. This approach enumerates five domains of evaluation-(1) medical history, (2) physical exam, (3) family history, (4) diagnostic phenotypic testing, and (5) variant correlation-through which a clinician can distinguish a molecular finding from a clinicomolecular diagnosis of genomic disease. With this framework, both geneticists and non-geneticist clinicians can optimize their ability to detect and mitigate genomic disease while avoiding the pitfalls of overdiagnosis. Our goal with this approach is to help clinicians translate secondary findings into meaningful recognition, treatment, and prevention of disease.
Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/prevenção & controle , Genômica/métodos , Humanos , AnamneseRESUMO
Because polygenic risk scores (PRSs) for coronary heart disease (CHD) are derived from mainly European ancestry (EA) cohorts, their validity in African ancestry (AA) and Hispanic ethnicity (HE) individuals is unclear. We investigated associations of "restricted" and genome-wide PRSs with CHD in three major racial and ethnic groups in the U.S. The eMERGE cohort (mean age 48 ± 14 years, 58% female) included 45,645 EA, 7,597 AA, and 2,493 HE individuals. We assessed two restricted PRSs (PRSTikkanen and PRSTada; 28 and 50 variants, respectively) and two genome-wide PRSs (PRSmetaGRS and PRSLDPred; 1.7 M and 6.6 M variants, respectively) derived from EA cohorts. Over a median follow-up of 11.1 years, 2,652 incident CHD events occurred. Hazard and odds ratios for the association of PRSs with CHD were similar in EA and HE cohorts but lower in AA cohorts. Genome-wide PRSs were more strongly associated with CHD than restricted PRSs were. PRSmetaGRS, the best performing PRS, was associated with CHD in all three cohorts; hazard ratios (95% CI) per 1 SD increase were 1.53 (1.46-1.60), 1.53 (1.23-1.90), and 1.27 (1.13-1.43) for incident CHD in EA, HE, and AA individuals, respectively. The hazard ratios were comparable in the EA and HE cohorts (pinteraction = 0.77) but were significantly attenuated in AA individuals (pinteraction= 2.9 × 10-3). These results highlight the potential clinical utility of PRSs for CHD as well as the need to assemble diverse cohorts to generate ancestry- and ethnicity PRSs.
Assuntos
Negro ou Afro-Americano/genética , Doença das Coronárias/genética , Predisposição Genética para Doença , Hispânico ou Latino/genética , Herança Multifatorial/genética , População Branca/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de ChancesRESUMO
PURPOSE: Genomic screening can improve clinical outcomes, but presentation of individuals with risk for polyposis identified via genomic screening is unknown. To inform assessment of clinical utility of genomic screening for polyposis risk, clinical presentation of individuals in an unselected health care system cohort with an APC pathogenic or likely pathogenic (P/LP) variant causative of familial adenomatous polyposis are described. METHODS: Electronic health records of individuals with an APC P/LP variant identified via the MyCode program (MyCode APC+) were reviewed to assess adenoma burden and compare it among individuals with a clinical diagnosis of familial adenomatous polyposis and matched variant-negative controls. RESULTS: The prevalence of APC P/LP variants in this health care cohort is estimated to be 1 in 2800. Twenty-four MyCode APC+ individuals were identified during the study period. Median age at result disclosure was 53 years. Rate of clinical polyposis was 8%. Two of six participants with a classic region variant and none of those with an attenuated region variant had polyposis. MyCode APC+ participants did not differ from controls in cumulative adenoma count. CONCLUSION: APC P/LP variant prevalence estimate in the MyCode cohort is higher than prior published prevalence rates. Individuals with APC P/LP variants identified via genomic screening had a low adenoma burden.
Assuntos
Adenoma , Polipose Adenomatosa do Colo , Neoplasias Colorretais , Humanos , Pessoa de Meia-Idade , Adenoma/diagnóstico , Adenoma/epidemiologia , Adenoma/genética , Polipose Adenomatosa do Colo/epidemiologia , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Genes APCRESUMO
Carotid artery atherosclerotic disease (CAAD) is a risk factor for stroke. We used a genome-wide association (GWAS) approach to discover genetic variants associated with CAAD in participants in the electronic Medical Records and Genomics (eMERGE) Network. We identified adult CAAD cases with unilateral or bilateral carotid artery stenosis and controls without evidence of stenosis from electronic health records at eight eMERGE sites. We performed GWAS with a model adjusting for age, sex, study site, and genetic principal components of ancestry. In eMERGE we found 1793 CAAD cases and 17,958 controls. Two loci reached genome-wide significance, on chr6 in LPA (rs10455872, odds ratio [OR] (95% confidence interval [CI]) = 1.50 (1.30-1.73), p = 2.1 × 10-8 ) and on chr7, an intergenic single nucleotide variant (SNV; rs6952610, OR (95% CI) = 1.25 (1.16-1.36), p = 4.3 × 10-8 ). The chr7 association remained significant in the presence of the LPA SNV as a covariate. The LPA SNV was also associated with coronary heart disease (CHD; 4199 cases and 11,679 controls) in this study (OR (95% CI) = 1.27 (1.13-1.43), p = 5 × 10-5 ) but the chr7 SNV was not (OR (95% CI) = 1.03 (0.97-1.09), p = .37). Both variants replicated in UK Biobank. Elevated lipoprotein(a) concentrations ([Lp(a)]) and LPA variants associated with elevated [Lp(a)] have previously been associated with CAAD and CHD, including rs10455872. With electronic health record phenotypes in eMERGE and UKB, we replicated a previously known association and identified a novel locus associated with CAAD.
Assuntos
Estenose das Carótidas , Estudo de Associação Genômica Ampla , Registros Eletrônicos de Saúde , Predisposição Genética para Doença , Genômica , Humanos , Lipoproteína(a)/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Massively parallel sequencing is emerging from research settings into clinical practice, helping the vision of precision medicine to become a reality. The most successful applications are using the tools of implementation science within the framework of the learning health-care system. This article examines the application of massively parallel sequencing to four clinical scenarios: pharmacogenomics, diagnostic testing, somatic testing for molecular tumor characterization, and population screening. For each application, it highlights an exemplar program to illustrate the enablers and challenges of implementation. International examples are also presented. These early lessons will allow other programs to account for these factors, helping to accelerate the implementation of precision medicine and health.