Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Macromolecules ; 55(21): 9726-9739, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36397936

RESUMO

A combination of statistical and triblock copolymer properties is explored to produce stable aqueous polymer dispersions suitable for the film formation. In order to perform an extensive structural characterization of the products in the dissolved, dispersed, and solid states, a wide range of symmetrical poly(acrylic acid-stat-styrene) x -block-poly(butyl acrylate) y -block-poly(acrylic acid-stat-styrene) x , poly(AA-st-St) x -b-PBA y -b-poly(AA-st-St) x , (x = 56, 108 and 140, y = 100-750; the AA:St molar ratio is 42:58) triblock copolymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) solution polymerization using a bifunctional symmetrical RAFT agent. It is demonstrated that the amphiphilic statistical outer blocks can provide sufficient stabilization to largely hydrophobic particles in aqueous dispersions. Such a molecular design provides an advantage over copolymers composed only of homoblocks, as a simple variation of the statistical block component ratio provides an efficient way to control the hydrophilicity of the stabilizer block, which ultimately affects the copolymer morphology in solutions and solid films. It was found by small-angle X-ray scattering (SAXS) that the copolymers behaved as dissolved chains in methylethylketone (MEK) but self-assembled in water into stable and well-defined spherical particles that increased in size with the length of the hydrophobic PBA block. These particles possessed an additional particulate surface structure formed by the statistical copolymer stabilizer block, which self-folded through the hydrophobic interactions between the styrene units. SAXS and atomic force microscopy showed that the copolymer films cast from the MEK solutions formed structures predicted by self-consistent field theory for symmetrical triblock copolymers, while the aqueous dispersions formed structural morphologies similar to a close-packed spheres, as would be expected for copolymer particles trapped kinetically due to the restricted movement of the blocks in the initial aqueous dispersion. A strong correlation between the structural morphology and mechanical properties of the films was observed. It was found that the properties of the solvent cast films were highly dependent on the ratios of the hard [poly(AA-st-St)] and soft (PBA) blocks, while the aqueous cast films did not show such a dependence. The continuous phase of hard blocks, always formed in the case of the aqueous cast films, produced films with a higher elastic modulus and a lower extension-to-break in a comparison with the solvent-cast films.

2.
J Am Chem Soc ; 133(4): 826-37, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21171624

RESUMO

Small angle X-ray scattering (SAXS) is a powerful characterization technique for the analysis of polymer-silica nanocomposite particles due to their relatively narrow particle size distributions and high electron density contrast between the polymer core and the silica shell. Time-resolved SAXS is used to follow the kinetics of both nanocomposite particle formation (via silica nanoparticle adsorption onto sterically stabilized poly(2-vinylpyridine) (P2VP) latex in dilute aqueous solution) and also the spontaneous redistribution of silica that occurs when such P2VP-silica nanocomposite particles are challenged by the addition of sterically stabilized P2VP latex. Silica adsorption is complete within a few seconds at 20 °C and the rate of adsorption strongly dependent on the extent of silica surface coverage. Similar very short time scales for silica redistribution are consistent with facile silica exchange occurring as a result of rapid interparticle collisions due to Brownian motion; this interpretation is consistent with a zeroth-order Smoluchowski-type calculation.

3.
Macromolecules ; 54(3): 1425-1440, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33583958

RESUMO

A range of amphiphilic statistical copolymers is synthesized where the hydrophilic component is either methacrylic acid (MAA) or 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the hydrophobic component comprises methyl, ethyl, butyl, hexyl, or 2-ethylhexyl methacrylate, which provide a broad range of partition coefficients (log P). Small-angle X-ray scattering studies confirm that these amphiphilic copolymers self-assemble to form well-defined spherical nanoparticles in an aqueous solution, with more hydrophobic copolymers forming larger nanoparticles. Varying the nature of the alkyl substituent also influenced self-assembly with more hydrophobic comonomers producing larger nanoparticles at a given copolymer composition. A model based on particle surface charge density (PSC model) is used to describe the relationship between copolymer composition and nanoparticle size. This model assumes that the hydrophilic monomer is preferentially located at the particle surface and provides a good fit to all of the experimental data. More specifically, a linear relationship is observed between the surface area fraction covered by the hydrophilic comonomer required to achieve stabilization and the log P value for the hydrophobic comonomer. Contrast variation small-angle neutron scattering is used to study the internal structure of these nanoparticles. This technique indicates partial phase separation within the nanoparticles, with about half of the available hydrophilic comonomer repeat units being located at the surface and hydrophobic comonomer-rich cores. This information enables a refined PSC model to be developed, which indicates the same relationship between the surface area fraction of the hydrophilic comonomer and the log P of the hydrophobic comonomer repeat units for the anionic (MAA) and cationic (DMAEMA) comonomer systems. This study demonstrates how nanoparticle size can be readily controlled and predicted using relatively ill-defined statistical copolymers, making such systems a viable attractive alternative to diblock copolymer nanoparticles for a range of industrial applications.

4.
J Am Chem Soc ; 132(7): 2166-8, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20108900

RESUMO

Addition of excess sterically stabilized P2VP latex to a colloidal dispersion of P2VP-silica nanocomposite particles (with silica shells at full monolayer coverage) leads to the facile redistribution of the silica nanoparticles such that partial coverage of all the P2VP latex particles is achieved. This silica exchange, which is complete within 1 h at 20 degrees C as judged by small-angle x-ray scattering, is observed for nanocomposite particles prepared by heteroflocculation, but not for nanocomposite particles prepared by in situ copolymerization. These observations are expected to have important implications for the optimization of nanocomposite formulations in the coatings industry.

5.
Langmuir ; 26(16): 13662-71, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20695618

RESUMO

The redistribution of silica nanoparticles between "core-shell" polymer-silica nanocomposites and sterically stabilized latexes is investigated using a combination of electron microscopy, disk centrifuge photosedimentometry (DCP), and X-ray photoelectron spectroscopy (XPS). Facile exchange of silica nanoparticles occurs on addition of sterically-stabilized polystyrene (or poly(2-vinylpyridine)) latex to polystyrene-silica (or poly(2-vinylpyridine)-silica) nanocomposite particles previously prepared by heteroflocculation. In contrast, no silica exchange occurs after such a latex "challenge" if similar polymer/silica nanocomposite particles are prepared via in situ polymerization. Silica redistribution can be confirmed by post mortem electron microscopy studies, which are facilitated if the original nanocomposite and latex particles differ sufficiently in their mean diameters. Ideally, XPS requires a unique elemental marker for the nanocomposite particle cores, which become progressively more exposed if silica exchange occurs. DCP is a particularly convenient in situ technique for assessing whether or not silica exchange has occurred. If no silica exchange occurs, there is little or no change in the nanocomposite and latex size distributions. On the other hand, silica redistribution always results in a larger mean particle diameter for the (partially) silica-coated latex particles relative to the original bare latex. In addition, incipient flocculation is typically observed after silica exchange. Like electron microscopy, DCP studies are aided if there is a significant difference in particle diameter between the original polymer-silica nanocomposite particles and the added latex. Moreover, silica redistribution can be prevented for heteroflocculated polymer-silica nanocomposite particles under certain conditions. For example, although silica exchange is observed at pH 10 when adding sterically-stabilized polystyrene (or poly(2-vinylpyridine)) latex to heteroflocculated poly(2-vinylpyridine)-silica particles, it does not occur at pH 5. Presumably, this is due to greater electrostatic attraction between the cationic P2VP cores and the anionic silica nanoparticles at this lower pH.

6.
Macromolecules ; 50(3): 796-802, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216792

RESUMO

Polymerization-induced self-assembly (PISA) has become a widely used technique for the rational design of diblock copolymer nano-objects in concentrated aqueous solution. Depending on the specific PISA formulation, reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization typically provides straightforward access to either spheres, worms, or vesicles. In contrast, RAFT aqueous emulsion polymerization formulations often lead to just kinetically-trapped spheres. This limitation is currently not understood, and only a few empirical exceptions have been reported in the literature. In the present work, the effect of monomer solubility on copolymer morphology is explored for an aqueous PISA formulation. Using 2-hydroxybutyl methacrylate (aqueous solubility = 20 g dm-3 at 70 °C) instead of benzyl methacrylate (0.40 g dm-3 at 70 °C) for the core-forming block allows access to an unusual "monkey nut" copolymer morphology over a relatively narrow range of target degrees of polymerization when using a poly(methacrylic acid) RAFT agent at pH 5. These new anisotropic nanoparticles have been characterized by transmission electron microscopy, dynamic light scattering, aqueous electrophoresis, shear-induced polarized light imaging (SIPLI), and small-angle X-ray scattering.

7.
Langmuir ; 25(9): 5339-47, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19260684

RESUMO

The adsorption of small silica particles onto large sterically stabilized poly(2-vinylpyridine) [P2VP] latex particles in aqueous solution is assessed as a potential route to nanocomposite particles with a "core-shell" morphology. Geometric considerations allow the packing efficiency, P, to be related to the number of adsorbed silica particles per latex particle, N. Making no assumptions about the packing structure, this approach leads to a theoretical estimate for P of 86 +/- 4%. Experimentally, dynamic light scattering is used to obtain a plot of hydrodynamic diameter against N, which indicates the conditions required for monolayer coverage of the latex by the silica particles. Transmission electron microscopy confirmed that, at approximately monolayer coverage, calcination of these nanocomposite particles led to the formation of well-defined hollow silica shells. This is interpreted as strong evidence for a contiguous monolayer of silica particles surrounding the latex cores. On this basis, an experimental value for P of 69 +/- 4% was estimated for nanocomposite particles prepared by the heteroflocculation of a 20 nm silica sol with near-monodisperse P2VP latexes of either 463 or 616 nm diameter at approximately pH 10. X-ray photoelectron spectroscopy was used to quantify the extent of latex surface coverage by the silica particles. This technique gave good agreement with the silica packing efficiencies estimated from calcination studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA