RESUMO
Obesity is a major risk factor for cancer. Conventional thought suggests that elevated adiposity predisposes to heightened inflammatory stress and potentiates tumor growth, yet underlying mechanisms remain ill-defined. Here, we show that tumors from patients with a body mass index >35 carry a high burden of senescent cells. In mouse syngeneic tumor models, we correlated a pronounced accretion of senescent cancer cells with poorly immunogenic tumors when mice were subjected to diet-induced obesity (DIO). Highly immunogenic tumors showed lesser senescence burden suggesting immune-mediated elimination of senescent cancer cells, likely targeted as a consequence of their senescence-associated secretory phenotype. Treatment with the senolytic BH3 mimetic small molecule inhibitor ABT-263 selectively stalled tumor growth in mice with DIO to rates comparable to regular diet-fed mice. Thus, consideration of body adiposity in the selection of cancer therapy may be a critical determinant for disease outcome in poorly immunogenic malignancies.
Assuntos
Senescência Celular , Neoplasias , Camundongos , Animais , Obesidade/complicaçõesRESUMO
Cellular adaptation to low oxygen tension triggers primitive pathways that ensure proper cell function. Conditions of hypoxia and low glucose are characteristic of injured tissues and hence successive waves of inflammatory cells must be suited to function under low oxygen tension and metabolic stress. While Hypoxia-Inducible Factor (HIF)-1α has been shown to be essential for the inflammatory response of myeloid cells by regulating the metabolic switch to glycolysis, less is known about how HIF1α is triggered in inflammation. Here, we demonstrate that cells of the innate immune system require activity of the inositol-requiring enzyme 1α (IRE1α/XBP1) axis in order to initiate HIF1α-dependent production of cytokines such as IL1ß, IL6 and VEGF-A. Knockout of either HIF1α or IRE1α in myeloid cells ameliorates vascular phenotypes in a model of retinal pathological angiogenesis driven by sterile inflammation. Thus, pathways associated with ER stress, in partnership with HIF1α, may co-regulate immune adaptation to low oxygen.
Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Hipóxia , Oxigênio/metabolismo , Células Mieloides/metabolismo , Inflamação/metabolismo , Subunidade alfa do Fator 1 Induzível por HipóxiaRESUMO
Diabetic macular edema is a major complication of diabetes resulting in loss of central vision. Although heightened vessel leakiness has been linked to glial and neuronal-derived factors, relatively little is known on the mechanisms by which mature endothelial cells exit from a quiescent state and compromise barrier function. Here we report that endothelial NOTCH1 signaling in mature diabetic retinas contributes to increased vascular permeability. By providing both human and mouse data, we show that NOTCH1 ligands JAGGED1 and DELTA LIKE-4 are up-regulated secondary to hyperglycemia and activate both canonical and rapid noncanonical NOTCH1 pathways that ultimately disrupt endothelial adherens junctions in diabetic retinas by causing dissociation of vascular endothelial-cadherin from ß-catenin. We further demonstrate that neutralization of NOTCH1 ligands prevents diabetes-induced retinal edema. Collectively, these results identify a fundamental process in diabetes-mediated vascular permeability and provide translational rational for targeting the NOTCH pathway (primarily JAGGED1) in conditions characterized by compromised vascular barrier function.
Assuntos
Permeabilidade Capilar , Retinopatia Diabética/patologia , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Ativação Enzimática , Hiperglicemia/metabolismo , Proteína Jagged-1/biossíntese , Camundongos , Óxido Nítrico/biossíntese , Vasos Retinianos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismoRESUMO
Vision loss caused by retinal diseases affects hundreds of millions of individuals worldwide. The retina is a delicate central nervous system tissue stratified into layers of cells with distinct roles. Currently, there is a void in treatments that selectively target diseased retinal cells, and current therapeutic paradigms present complications associated with off-target effects. Herein, as a proof of concept, we introduce an in vivo method using a femtosecond laser to locally optoporate retinal ganglion cells (RGCs) targeted with functionalized gold nanoparticles (AuNPs). We provide evidence that AuNPs functionalized with an antibody toward the cell-surface voltage-gated K+ channel subunit KV1.1 can selectively deliver fluorescently tagged siRNAs or fluorescein isothiocyanate-dextran dye into retinal cells when irradiated with an 800 nm 100 fs laser. Importantly, neither AuNP administration nor irradiation resulted in RGC death. This system provides a novel, non-viral-based approach that has the potential to selectively target retinal cells in diseased regions while sparing healthy areas and may be harnessed in future cell-specific therapies for retinal degenerative diseases.
RESUMO
The transcription factor p53 mediates neuronal death in a variety of stress-related and neurodegenerative conditions. The proapoptotic activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP) family members: ASPP1 and ASPP2. However, whether ASPP1/2 play a role in the regulation of p53-dependent neuronal death in the CNS is currently unknown. To address this, we asked whether ASPP1/2 contribute to the death of retinal ganglion cells (RGCs) using in vivo models of acute optic nerve damage in mice and rats. Here, we show that p53 is activated in RGCs soon after injury and that axotomy-induced RGC death is attenuated in p53 heterozygote and null mice. We demonstrate that ASPP1/2 proteins are abundantly expressed by injured RGCs, and that short interfering (si)RNA-based ASPP1 or ASPP2 knockdown promotes robust RGC survival. Comparative gene expression analysis revealed that siASPP-mediated downregulation of p53-upregulated-modulator-of-apoptosis (PUMA), Fas/CD95, and Noxa depends on p53 transcriptional activity. Furthermore, siRNA against PUMA or Fas/CD95 confers neuroprotection, demonstrating a functional role for these p53 targets in RGC death. Our study demonstrates a novel role for ASPP1 and ASPP2 in the death of RGCs and provides evidence that blockade of the ASPP-p53 pathway is beneficial for central neuron survival after axonal injury.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular/fisiologia , Células Ganglionares da Retina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Receptor fas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Axônios/metabolismo , Regulação para Baixo , Feminino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Receptor fas/genéticaRESUMO
Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME. In cell culture models, sustained hyperglycemia provoked cellular senescence in subsets of vascular endothelial cells displaying perturbed transendothelial junctions associated with poor barrier function and leading to micro-inflammation. Pharmacological elimination of senescent cells in a mouse model of DME reduces diabetes-induced retinal vascular leakage and preserves retinal function. We then conducted a phase 1 single ascending dose safety study of UBX1325 (foselutoclax), a senolytic small-molecule inhibitor of BCL-xL, in patients with advanced DME for whom anti-vascular endothelial growth factor therapy was no longer considered beneficial. The primary objective of assessment of safety and tolerability of UBX1325 was achieved. Collectively, our data suggest that therapeutic targeting of senescent cells in the diabetic retina with a BCL-xL inhibitor may provide a long-lasting, disease-modifying intervention for DME. This hypothesis will need to be verified in larger clinical trials. ClinicalTrials.gov identifier: NCT04537884 .
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Animais , Camundongos , Humanos , Edema Macular/tratamento farmacológico , Edema Macular/etiologia , Retinopatia Diabética/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Células Endoteliais , Senoterapia , Senescência CelularRESUMO
Age-related macular degeneration is a prevalent neuroinflammatory condition and a major cause of blindness driven by genetic and environmental factors such as obesity. In diseases of aging, modifiable factors can be compounded over the life span. We report that diet-induced obesity earlier in life triggers persistent reprogramming of the innate immune system, lasting long after normalization of metabolic abnormalities. Stearic acid, acting through Toll-like receptor 4 (TLR4), is sufficient to remodel chromatin landscapes and selectively enhance accessibility at binding sites for activator protein-1 (AP-1). Myeloid cells show less oxidative phosphorylation and shift to glycolysis, ultimately leading to proinflammatory cytokine transcription, aggravation of pathological retinal angiogenesis, and neuronal degeneration associated with loss of visual function. Thus, a past history of obesity reprograms mononuclear phagocytes and predisposes to neuroinflammation.
Assuntos
Memória Epigenética , Imunidade Inata , Degeneração Macular , Doenças Neuroinflamatórias , Obesidade , Animais , Camundongos , Citocinas/genética , Imunidade Inata/genética , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Obesidade/genética , Fagócitos/imunologia , Transcrição Gênica , Degeneração Macular/genética , Degeneração Macular/imunologia , Reprogramação Celular/genética , Receptor 4 Toll-Like/genéticaRESUMO
Pathological neovascularization in age-related macular degeneration (nvAMD) drives the principal cause of blindness in the elderly. While there is a robust genetic association between genes of innate immunity and AMD, genome-to-phenome relationships are low, suggesting a critical contribution of environmental triggers of disease. Possible insight comes from the observation that a past history of infection with pathogens such as Chlamydia pneumoniae, or other systemic inflammation, can predispose to nvAMD in later life. Using a mouse model of nvAMD with prior C. pneumoniae infection, endotoxin exposure, and genetic ablation of distinct immune cell populations, we demonstrated that peripheral infections elicited epigenetic reprogramming that led to a persistent memory state in retinal CX3CR1+ mononuclear phagocytes (MNPs). The immune imprinting persisted long after the initial inflammation had subsided and ultimately exacerbated choroidal neovascularization in a model of nvAMD. Single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) identified activating transcription factor 3 (ATF3) as a central mediator of retina-resident MNP reprogramming following peripheral inflammation. ATF3 polarized MNPs toward a reparative phenotype biased toward production of proangiogenic factors in response to subsequent injury. Therefore, a past history of bacterial endotoxin-induced inflammation can lead to immunological reprograming within CNS-resident MNPs and aggravate pathological angiogenesis in the aging retina.
Assuntos
Neovascularização de Coroide , Degeneração Macular , Humanos , Microglia/patologia , Retina/patologia , Neovascularização de Coroide/genética , Degeneração Macular/genética , Degeneração Macular/patologia , Inflamação/patologiaRESUMO
The beneficial effects of brown adipose tissue (BAT) on obesity and associated metabolic diseases are mediated through its capacity to dissipate energy as heat. While immune cells, such as tissue-resident macrophages, are known to influence adipose tissue homeostasis, relatively little is known about their contribution to BAT function. Here we report that neuropilin-1 (NRP1), a multiligand single-pass transmembrane receptor, is highly expressed in BAT-resident macrophages. During diet-induced obesity (DIO), myeloid-resident NRP1 influences interscapular BAT mass, and consequently vascular morphology, innervation density and ultimately core body temperature during cold exposure. Thus, NRP1-expressing myeloid cells contribute to the BAT homeostasis and potentially its thermogenic function in DIO.
Assuntos
Tecido Adiposo Marrom/fisiologia , Homeostase , Células Mieloides/metabolismo , Neuropilina-1/fisiologia , Obesidade/prevenção & controle , Termogênese , Animais , Dieta/efeitos adversos , Metabolismo Energético , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologiaRESUMO
Age-related macular degeneration (AMD) in its various forms is a leading cause of blindness in industrialized countries. Here, we provide evidence that ligands for neuropilin-1 (NRP1), such as Semaphorin 3A and VEGF-A, are elevated in the vitreous of patients with AMD at times of active choroidal neovascularization (CNV). We further demonstrate that NRP1-expressing myeloid cells promote and maintain CNV. Expression of NRP1 on cells of myeloid lineage is critical for mitigating production of inflammatory factors such as IL6 and IL1ß. Therapeutically trapping ligands of NRP1 with an NRP1-derived trap reduces CNV. Collectively, our findings identify a role for NRP1-expressing myeloid cells in promoting pathological angiogenesis during CNV and introduce a therapeutic approach to counter neovascular AMD.
Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Humanos , Inflamação , Neuropilina-1/genética , Fator A de Crescimento do Endotélio Vascular , Acuidade VisualRESUMO
Attenuating pathological angiogenesis in diseases characterized by neovascularization such as diabetic retinopathy has transformed standards of care. Yet little is known about the molecular signatures discriminating physiological blood vessels from their diseased counterparts, leading to off-target effects of therapy. We demonstrate that in contrast to healthy blood vessels, pathological vessels engage pathways of cellular senescence. Senescent (p16INK4A-expressing) cells accumulate in retinas of patients with diabetic retinopathy and during peak destructive neovascularization in a mouse model of retinopathy. Using either genetic approaches that clear p16INK4A-expressing cells or small molecule inhibitors of the anti-apoptotic protein BCL-xL, we show that senolysis suppresses pathological angiogenesis. Single-cell analysis revealed that subsets of endothelial cells with senescence signatures and expressing Col1a1 are no longer detected in BCL-xL-inhibitor-treated retinas, yielding a retina conducive to physiological vascular repair. These findings provide mechanistic evidence supporting the development of BCL-xL inhibitors as potential treatments for neovascular retinal disease.
Assuntos
Senescência Celular , Doenças Retinianas/patologia , Proteína bcl-X/metabolismo , Animais , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Flavonóis/química , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Patológica , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Proteína bcl-X/antagonistas & inibidoresRESUMO
Galpha(i)-coupled receptors comprise a diverse family of receptors that induce transformation by largely unknown mechanisms. We previously found that the Galpha(i)-coupled dopamine-D2short (D2S) receptor transforms Balb-D2S cells via Gαi3. To identify new Gαi effectors, a yeast two-hybrid screen was done using constitutively active Gαi3-Q204L as bait, and tumor necrosis factor-alpha (TNFα)-induced protein 8 (TNFAIP8, SCC-S2/NDED/GG2-1) was identified. In contrast, TNFAIP8-related TIPE1 and TIPE2 showed a very weak interaction with Gαi3. In yeast mating, in vitro pull-down, co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) assays, TNFAIP8 preferentially interacted with activated Gαi proteins, consistent with direct Gαi-TNFAIP8 coupling. Over-expression or depletion of TNFAIP8 using antisense constructs in Balb-D2S cells did not affect D2S-induced signaling to Gαi-dependent inhibition of cAMP. In contrast, antisense depletion of TNFAIP8 completely inhibited spontaneous and D2S-induced foci formation, consistent with a role for TNFAIP8 in Gαi-dependent transformation. To address possible mechanisms, the effect of D2S signaling via TNFAIP8 on TNFα action was examined. D2S receptor activation inhibited TNFα-induced cell death in Balb-D2S cells, but not in cells depleted of TNFAIP8. However, depletion of TNFAIP8 did not prevent D2S-induced inhibition of TNFα-mediated caspase activation, suggesting that D2S/TNFAIP8-induced protection from TNFα-induced cell death is caspase-independent. The data suggest that Gαi-TNFAIP8-mediated rescue of pre-oncogenic cells enhances progression to oncogenic transformation, providing a selective target to inhibit cellular transformation.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Transformação Celular Neoplásica/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/genética , Células 3T3 BALB , Caspases/metabolismo , Morte Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Transferência Ressonante de Energia de Fluorescência , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Oligonucleotídeos Antissenso/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. We recently demonstrated that levels of miR-106b were significantly decreased in the vitreous and plasma of patients with neovascular age-related macular degeneration (AMD). Here we show that expression of the miR-106b-25 cluster is negatively regulated by the unfolded protein response pathway of protein kinase RNA-like ER kinase (PERK) in a mouse model of neovascular AMD. A reduction in levels of miR-106b triggers vascular growth both in vivo and in vitro by inducing production of pro-angiogenic factors. We demonstrate that therapeutic delivery of miR-106b to the retina with lentiviral vectors protects against aberrant retinal angiogenesis in two distinct mouse models of pathological retinal neovascularization. Results from this study suggest that miRNAs such as miR-106b have the potential to be used as multitarget therapeutics for conditions characterized by pathological retinal angiogenesis.
Assuntos
Neovascularização de Coroide/genética , Degeneração Macular/genética , MicroRNAs/genética , Neovascularização Retiniana/genética , Animais , Linhagem Celular , Movimento Celular/genética , Neovascularização de Coroide/patologia , Retinopatia Diabética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Células Endoteliais , Queimaduras Oculares , Humanos , Terapia a Laser , Degeneração Macular/patologia , Camundongos , Oxigênio/toxicidade , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismoRESUMO
In developed countries, the leading causes of blindness such as diabetic retinopathy are characterized by disorganized vasculature that can become fibrotic. Although many such pathological vessels often naturally regress and spare sight-threatening complications, the underlying mechanisms remain unknown. Here, we used orthogonal approaches in human patients with proliferative diabetic retinopathy and a mouse model of ischemic retinopathies to identify an unconventional role for neutrophils in vascular remodeling during late-stage sterile inflammation. Senescent vasculature released a secretome that attracted neutrophils and triggered the production of neutrophil extracellular traps (NETs). NETs ultimately cleared diseased endothelial cells and remodeled unhealthy vessels. Genetic or pharmacological inhibition of NETosis prevented the regression of senescent vessels and prolonged disease. Thus, clearance of senescent retinal blood vessels leads to reparative vascular remodeling.
Assuntos
Envelhecimento/patologia , Retinopatia Diabética/patologia , Armadilhas Extracelulares/imunologia , Vasos Retinianos/patologia , Animais , Senescência Celular , Retinopatia Diabética/imunologia , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Vasos Retinianos/imunologiaRESUMO
Age-related macular degeneration in its neovascular form (NV AMD) is the leading cause of vision loss among adults above the age of 60. Epidemiological data suggest that in men, overall abdominal obesity is the second most important environmental risk factor after smoking for progression to late-stage NV AMD To date, the mechanisms that underscore this observation remain ill-defined. Given the impact of high-fat diets on gut microbiota, we investigated whether commensal microbes influence the evolution of AMD Using mouse models of NV AMD, microbiotal transplants, and other paradigms that modify the gut microbiome, we uncoupled weight gain from confounding factors and demonstrate that high-fat diets exacerbate choroidal neovascularization (CNV) by altering gut microbiota. Gut dysbiosis leads to heightened intestinal permeability and chronic low-grade inflammation characteristic of inflammaging with elevated production of IL-6, IL-1ß, TNF-α, and VEGF-A that ultimately aggravate pathological angiogenesis.
Assuntos
Neovascularização de Coroide/patologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Degeneração Macular/patologia , Neovascularização Patológica , Obesidade/complicações , Animais , Citocinas/sangue , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Disbiose/etiologia , Transplante de Microbiota Fecal , Inflamação/patologia , Degeneração Macular/epidemiologia , Camundongos , Obesidade/patologiaRESUMO
The transcription factor p53 mediates the apoptosis of post-mitotic neurons exposed to a wide range of stress stimuli. The apoptotic activity of p53 is tightly regulated by the apoptosis-stimulating proteins of p53 (ASPP) family members: ASPP1, ASPP2 and iASPP. We previously showed that the pro-apoptotic members ASPP1 and ASPP2 contribute to p53-dependent death of retinal ganglion cells (RGCs). However, the role of the p53 inhibitor iASPP in the central nervous system (CNS) remains to be elucidated. To address this, we asked whether iASPP contributes to the survival of RGCs in an in vivo model of acute optic nerve damage. We demonstrate that iASPP is expressed by injured RGCs and that iASPP phosphorylation at serine residues, which increase iASPP affinity towards p53, is significantly reduced following axotomy. We show that short interference RNA (siRNA)-induced iASPP knockdown exacerbates RGC death, whereas adeno-associated virus (AAV)-mediated iASPP expression promotes RGC survival. Importantly, our data also demonstrate that increasing iASPP expression in RGCs downregulates p53 activity and blocks the expression of pro-apoptotic targets PUMA and Fas/CD95. This study demonstrates a novel role for iASPP in the survival of RGCs, and provides further evidence of the importance of the ASPP family in the regulation of neuronal loss after axonal injury.
Assuntos
Axônios/metabolismo , Sobrevivência Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Nervo Óptico/metabolismo , Proteínas Repressoras/metabolismo , Animais , Axotomia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurônios/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genéticaRESUMO
Glaucoma is a group of diseases characterized by progressive optic nerve degeneration that results in visual field loss and irreversible blindness. A crucial element in the pathophysiology of all forms of glaucoma is the death of retinal ganglion cells (RGCs), a population of CNS neurons with their soma in the inner retina and axons in the optic nerve. Strategies that delay or halt RGC loss have been recognized as potentially beneficial to preserve vision in glaucoma; however, the success of these approaches depends on an in-depth understanding of the mechanisms that lead to RGC dysfunction and death. In recent years, there has been an exponential increase in valuable information regarding the molecular basis of RGC death stemming from animal models of acute and chronic optic nerve injury as well as experimental glaucoma. The emerging landscape is complex and points at a variety of molecular signals - acting alone or in cooperation - to promote RGC death. These include: axonal transport failure, neurotrophic factor deprivation, toxic pro-neurotrophins, activation of intrinsic and extrinsic apoptotic signals, mitochondrial dysfunction, excitotoxic damage, oxidative stress, misbehaving reactive glia and loss of synaptic connectivity. Collectively, this body of work has considerably updated and expanded our view of how RGCs might die in glaucoma and has revealed novel, potential targets for neuroprotection.
Assuntos
Apoptose/fisiologia , Glaucoma/fisiopatologia , Células Ganglionares da Retina/patologia , Animais , Apoptose/efeitos dos fármacos , Transporte Axonal/efeitos dos fármacos , Progressão da Doença , Cães , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Humanos , Camundongos , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/uso terapêutico , Coelhos , Ratos , Receptor trkA/metabolismo , Retina/efeitos dos fármacos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismoRESUMO
Although they have distinct functions, the signaling of dopamine-D(2) receptor short and long isoforms (D(2)S and D(2)L) is virtually identical. We compared inhibitory regulation of extracellular signal-regulated kinases (ERK1/2) in GH4 pituitary cells separately transfected with these isoforms. Activation of rat or human dopamine-D(2)S, muscarinic or somatostatin receptors inhibited thyrotropin-releasing hormone-induced ERK1/2 phosphorylation, while the D(2)L receptor failed to inhibit this response. In order to address the structural basis for the differential signaling of D(2)S and D(2)L receptors, we examined the D(2)L-SS mutant, in which a protein kinase C (PKC) pseudosubstrate site that is present in the D(2)L but not D(2)S receptor was converted to a consensus PKC site. In transfected GH4 cells, the D(2)L-SS mutant inhibited thyrotropin-releasing hormone-induced ERK1/2 phosphorylation almost as strongly as the D(2)S receptor. A D(2)S-triple mutant that eliminates PKC sites involved in D(2)S receptor desensitization also inhibited ERK1/2 activation. Similarly, in striatal cultures, the D(2)-selective agonist quinpirole inhibited potassium-stimulated ERK1/2 phosphorylation, indicating the presence of this pathway in neurons. In conclusion, the D(2)S and D(2)L receptors differ in inhibitory signaling to ERK1/2 due to specific residues in the D(2)L receptor alternatively spliced domain, which may account for differences in their function in vivo.
Assuntos
Dopamina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/fisiologia , Processamento Alternativo/genética , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Células Cultivadas , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Humanos , Mutação/genética , Neurônios/efeitos dos fármacos , Fosforilação , Hipófise/metabolismo , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/química , Estrutura Terciária de Proteína/genética , Ratos , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/genética , Transdução de Sinais/efeitos dos fármacos , Hormônio Liberador de Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/farmacologiaRESUMO
This study provides the first comprehensive evidence that the second intracellular loop C-terminal domain (Ci2) is critical for receptor-G protein coupling to multiple responses. Although Ci2 is weakly conserved, its role in 5-hydroxytryptamine-1A (5-HT1A) receptor function was suggested by the selective loss of Gbetagamma-mediated signaling in the T149A-5-HT1A receptor mutant. More than 60 point mutant 5-HT1A receptors in the alpha-helical Ci2 sequence (143DYVNKRTPRR152) were generated. Most mutants retained agonist binding and were tested for Gbetagamma signaling to adenylyl cyclase II or phospholipase C and Galphai coupling to detect constitutive and agonist-induced Gi/Go coupling. Remarkably, most point mutations markedly attenuated 5-HT1A signaling, indicating that the entire Ci2 domain is critical for receptor G-protein coupling. Six signaling phenotypes were observed: wild-type-like, Galphai-coupled/weak Gbetagamma-coupled, Gbetagamma-uncoupled, Gbetagamma-selective coupled, uncoupled, and inverse coupling. Our data elucidate specific roles of Ci2 residues consistent with predictions based on rhodopsin crystal structure. The absolute coupling requirement for lysine, arginine, and proline residues is consistent with a predicted amphipathic alpha-helical Ci2 domain that is kinked at Pro150. Polar residues (Thr149, Asn146) located in the externally oriented positively charged face were required for Gbetagamma but not Galphai coupling, suggesting a direct interface with Gbetagamma subunits. The hydrophobic face includes the critical Tyr144 that directs the specificity of coupling to both Gbetagamma and Galphai pathways. The key coupling residues Tyr144/Lys147 (Ci2) are predicted to orient internally, forming hydrogen and ionic bonds with Asp133/Arg134 (Ni2 DRY motif) and Glu340 (Ci3) to stabilize the Gprotein coupling domain. Thus, the 5-HT1A receptor Ci2 domain determines Gbetagamma specificity and stabilizes Galphai-mediated signaling.