Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(8): 1718-1723, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29439203

RESUMO

Marine sponges are prolific sources of unique bioactive natural products. The sponge Theonella swinhoei is represented by several distinct variants with largely nonoverlapping chemistry. For the Japanese chemotype Y harboring diverse complex polyketides and peptides, we previously provided genomic and functional evidence that a single symbiont, the filamentous, multicellular organism "Candidatus Entotheonella factor," produces almost all of these compounds. To obtain further insights into the chemistry of "Entotheonella," we investigated another phylotype, "Candidatus Entotheonella serta," present in the T. swinhoei WA sponge chemotype, a source of theonellamide- and misakinolide-type compounds. Unexpectedly, considering the lower chemical diversity, sequencing of individual bacterial filaments revealed an even larger number of biosynthetic gene regions than for Ca E. factor, with virtually no overlap. These included genes for misakinolide and theonellamide biosynthesis, the latter assigned by comparative genomic and metabolic analysis of a T. swinhoei chemotype from Israel, and by biochemical studies. The data suggest that both compound families, which were among the earliest model substances to study bacterial producers in sponges, originate from the same bacterium in T. swinhoei WA. They also add evidence that metabolic richness and variability could be a more general feature of Entotheonella symbionts.


Assuntos
Fenômenos Fisiológicos Bacterianos , Simbiose , Theonella/microbiologia , Animais , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Genômica , Policetídeos/metabolismo , Theonella/química , Theonella/fisiologia
2.
Nature ; 506(7486): 58-62, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476823

RESUMO

Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such 'talented' producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus 'Entotheonella' with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. 'Entotheonella' spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum 'Tectomicrobia'. The pronounced bioactivities and chemical uniqueness of 'Entotheonella' compounds provide significant opportunities for ecological studies and drug discovery.


Assuntos
Deltaproteobacteria/classificação , Deltaproteobacteria/metabolismo , Descoberta de Drogas , Animais , Vias Biossintéticas/genética , Deltaproteobacteria/genética , Deltaproteobacteria/fisiologia , Microbiologia Ambiental , Genes Bacterianos/genética , Genoma Bacteriano/genética , Metagenômica , Dados de Sequência Molecular , Família Multigênica/genética , Peptídeos/metabolismo , Policetídeos/metabolismo , Poríferos/metabolismo , Poríferos/microbiologia , Análise de Célula Única , Simbiose
3.
Nat Prod Rep ; 29(1): 72-86, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22124767

RESUMO

This review covers the emerging biosynthetic role of crotonyl-CoA carboxylase/reductase (CCR) homologs in extending the structural and functional diversity of polyketide natural products. CCRs catalyze the reductive carboxylation of α,ß-unsaturated acyl-CoA substrates to produce a variety of substituted malonyl-CoA derivatives employed as polyketide synthase extender units. Here we discuss the history of CCRs in both primary and secondary metabolism, the mechanism by which they function, examples of new polyketide diversity from pathway specific CCRs, and the role of CCRs in facilitating the bioengineering novel polyketides.


Assuntos
Acil Coenzima A/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Policetídeos/metabolismo , Sesquiterpenos/metabolismo , Estrutura Molecular , Fosfatos de Poli-Isoprenil/química , Conformação Proteica , Sesquiterpenos/química
4.
J Am Chem Soc ; 133(6): 1971-7, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21247149

RESUMO

Reported is the structure and biosynthesis of ansalactam A, an ansamycin class polyketide produced by an unusual modification of the polyketide pathway. This new metabolite, produced by a marine sediment-derived bacterium of the genus Streptomyces , possesses a novel spiro γ-lactam moiety and a distinctive isobutyryl polyketide fragment observed for the first time in this class of natural products. The structure of ansalactam A was defined by spectroscopic methods including X-ray crystallographic analysis. Biosynthetic studies with stable isotopes further led to the discovery of a new, branched chain polyketide synthase extender unit derived from (E)-4-methyl-2-pentenoic acid for polyketide assembly observed for the first time in this class of natural products.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Organismos Aquáticos/metabolismo , Policetídeos/química , Rifabutina/análogos & derivados , Rifabutina/química , Rifabutina/metabolismo , Streptomyces/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Sedimentos Geológicos/microbiologia , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
5.
Appl Environ Microbiol ; 77(11): 3617-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21498757

RESUMO

Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus.


Assuntos
Produtos Biológicos/biossíntese , Vias Biossintéticas/genética , Frankia/genética , Frankia/metabolismo , Genômica , Proteômica , Família Multigênica
6.
J Am Chem Soc ; 132(36): 12757-65, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20726561

RESUMO

Saliniketals A and B are unusual polyketides from the marine actinomycete Salinispora arenicola that inhibit ornithine decarboxylase induction. The structural similarities between the saliniketals and the ansa chain of the potent rifamycin antibiotics, which co-occur in the fermentation broth, suggest a common origin between the two compound classes. Using PCR-directed mutagenesis, chemical complementation studies, and stable isotope feeding experiments, we showed that the saliniketals are byproducts of the rifamycin biosynthetic pathway diverging at the stage of 34a-deoxyrifamycin W. Our results suggest that a single enzyme, the cytochrome P450 monooxygenase encoded by sare1259, catalyzes multiple oxidative rearrangement reactions on 34a-deoxyrifamyin W to yield both the saliniketal and rifamycin structural classes.


Assuntos
Actinobacteria/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Rifamicinas/biossíntese , Actinobacteria/química , Biocatálise , Compostos Bicíclicos Heterocíclicos com Pontes/química , Sistema Enzimático do Citocromo P-450/química , Conformação Molecular , Rifamicinas/química , Estereoisomerismo
8.
Chem Biol ; 20(5): 636-47, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706630

RESUMO

Most biologically active microbial natural products are known from strains that can be isolated and cultivated in the laboratory. However, the genomics era has revealed that cultured bacteria represent a mere fraction of total estimated bacterial biodiversity. With the development of community genomics, termed metagenomics, the uncultivated majority became accessible for functional analysis. Through metagenomic studies, novel biocatalysts and biosynthetic pathways are being discovered at a pace previously not possible using traditional molecular biology techniques. Additionally, the study of uncultivated bacteria has provided valuable insights into previously overlooked biocatalysts from cultured strains. This perspective highlights recent discoveries from metagenomics of uncultivated bacteria and discusses the impact of those findings on the field of natural products.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Produtos Biológicos/metabolismo , Vias Biossintéticas , Metagenômica/métodos , Amidas/química , Amidas/metabolismo , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Produtos Biológicos/química , Cianetos/química , Cianetos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Policetídeos/química , Policetídeos/metabolismo
9.
ACS Synth Biol ; 2(7): 379-83, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23654255

RESUMO

The polyketide synthase (PKS) biosynthetic code has recently expanded to include a newly recognized group of extender unit substrates derived from α,ß-unsaturated acyl-CoA molecules that deliver diverse side chain chemistry to polyketide backbones. Herein we report the identification of a three-gene operon responsible for the biosynthesis of the PKS building block isobutyrylmalonyl-CoA associated with the macrolide ansalactam A from the marine bacterium Streptomyces sp. CNH189. Using a synthetic biology approach, we engineered the production of unnatural 36-methyl-FK506 in Streptomyces sp. KCTC 11604BP by incorporating the branched extender unit into FK506 biosynthesis in place of its natural C-21 allyl side chain, which has been shown to be critical for FK506's potent immunosuppressant and neurite outgrowth activities.


Assuntos
Proteínas de Bactérias/fisiologia , Desenho de Fármacos , Complexos Multienzimáticos/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Streptomyces/fisiologia , Tacrolimo/metabolismo , Melhoramento Genético/métodos , Modelos Genéticos , Proteínas Recombinantes/genética , Tacrolimo/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA