Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39158361

RESUMO

OBJECTIVES: To develop, validate, and implement algorithms to identify diabetic retinopathy (DR) cases and controls from electronic health care records (EHRs). MATERIALS AND METHODS: We developed and validated electronic health record (EHR)-based algorithms to identify DR cases and individuals with type I or II diabetes without DR (controls) in 3 independent EHR systems: Vanderbilt University Medical Center Synthetic Derivative (VUMC), the VA Northeast Ohio Healthcare System (VANEOHS), and Massachusetts General Brigham (MGB). Cases were required to meet 1 of the following 3 criteria: (1) 2 or more dates with any DR ICD-9/10 code documented in the EHR, (2) at least one affirmative health-factor or EPIC code for DR along with an ICD9/10 code for DR on a different day, or (3) at least one ICD-9/10 code for any DR occurring within 24 hours of an ophthalmology examination. Criteria for controls included affirmative evidence for diabetes as well as an ophthalmology examination. RESULTS: The algorithms, developed and evaluated in VUMC through manual chart review, resulted in a positive predictive value (PPV) of 0.93 for cases and negative predictive value (NPV) of 0.91 for controls. Implementation of algorithms yielded similar metrics in VANEOHS (PPV = 0.94; NPV = 0.86) and lower in MGB (PPV = 0.84; NPV = 0.76). In comparison, the algorithm for DR implemented in Phenome-wide association study (PheWAS) in VUMC yielded similar PPV (0.92) but substantially reduced NPV (0.48). Implementation of the algorithms to the Million Veteran Program identified over 62 000 DR cases with genetic data including 14 549 African Americans and 6209 Hispanics with DR. CONCLUSIONS/DISCUSSION: We demonstrate the robustness of the algorithms at 3 separate healthcare centers, with a minimum PPV of 0.84 and substantially improved NPV than existing automated methods. We strongly encourage independent validation and incorporation of features unique to each EHR to enhance algorithm performance for DR cases and controls.

2.
Nat Med ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918629

RESUMO

Diabetes complications occur at higher rates in individuals of African ancestry. Glucose-6-phosphate dehydrogenase deficiency (G6PDdef), common in some African populations, confers malaria resistance, and reduces hemoglobin A1c (HbA1c) levels by shortening erythrocyte lifespan. In a combined-ancestry genome-wide association study of diabetic retinopathy, we identified nine loci including a G6PDdef causal variant, rs1050828 -T (Val98Met), which was also associated with increased risk of other diabetes complications. The effect of rs1050828 -T on retinopathy was fully mediated by glucose levels. In the years preceding diabetes diagnosis and insulin prescription, glucose levels were significantly higher and HbA1c significantly lower in those with versus without G6PDdef. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, participants with G6PDdef had significantly higher hazards of incident retinopathy and neuropathy. At the same HbA1c levels, G6PDdef participants in both ACCORD and the Million Veteran Program had significantly increased risk of retinopathy. We estimate that 12% and 9% of diabetic retinopathy and neuropathy cases, respectively, in participants of African ancestry are due to this exposure. Across continentally defined ancestral populations, the differences in frequency of rs1050828 -T and other G6PDdef alleles contribute to disparities in diabetes complications. Diabetes management guided by glucose or potentially genotype-adjusted HbA1c levels could lead to more timely diagnoses and appropriate intensification of therapy, decreasing the risk of diabetes complications in patients with G6PDdef alleles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA