Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 19(7): 1055-1065, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38491184

RESUMO

Multivalent presentation of ligands often enhances receptor activation and downstream signalling. DNA origami offers a precise nanoscale spacing of ligands, a potentially useful feature for therapeutic nanoparticles. Here we use a square-block DNA origami platform to explore the importance of the spacing of CpG oligonucleotides. CpG engages Toll-like receptors and therefore acts to activate dendritic cells. Through in vitro cell culture studies and in vivo tumour treatment models, we demonstrate that square blocks induce Th1 immune polarization when CpG is spaced at 3.5 nm. We observe that this DNA origami vaccine enhances DC activation, antigen cross-presentation, CD8 T-cell activation, Th1-polarized CD4 activation and natural-killer-cell activation. The vaccine also effectively synergizes with anti-PD-L1 for improved cancer immunotherapy in melanoma and lymphoma models and induces long-term T-cell memory. Our results suggest that DNA origami may serve as a platform for controlling adjuvant spacing and co-delivering antigens in vaccines.


Assuntos
Vacinas Anticâncer , Oligodesoxirribonucleotídeos , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Camundongos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , DNA/química , DNA/imunologia , Células Dendríticas/imunologia , Humanos , Camundongos Endogâmicos C57BL , Ilhas de CpG , Vacinas de DNA/química , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia , Linfócitos T CD8-Positivos/imunologia , Vacinação/métodos , Linhagem Celular Tumoral , Feminino
2.
Nat Nanotechnol ; 18(3): 281-289, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36543881

RESUMO

Living systems achieve robust self-assembly across a wide range of length scales. In the synthetic realm, nanofabrication strategies such as DNA origami have enabled robust self-assembly of submicron-scale shapes from a multitude of single-stranded components. To achieve greater complexity, subsequent hierarchical joining of origami can be pursued. However, erroneous and missing linkages restrict the number of unique origami that can be practically combined into a single design. Here we extend crisscross polymerization, a strategy previously demonstrated with single-stranded components, to DNA-origami 'slats' for fabrication of custom multi-micron shapes with user-defined nanoscale surface patterning. Using a library of ~2,000 strands that are combinatorially arranged to create unique DNA-origami slats, we realize finite structures composed of >1,000 uniquely addressable slats, with a mass exceeding 5 GDa, lateral dimensions of roughly 2 µm and a multitude of periodic structures. Robust production of target crisscross structures is enabled through strict control over initiation, rapid growth and minimal premature termination, and highly orthogonal binding specificities. Thus crisscross growth provides a route for prototyping and scalable production of structures integrating thousands of unique components (that is, origami slats) that each is sophisticated and molecularly precise.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos , Nanoestruturas/química , Conformação de Ácido Nucleico , DNA/química
3.
Nat Commun ; 12(1): 1741, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741912

RESUMO

Natural biomolecular assemblies such as actin filaments or microtubules can exhibit all-or-nothing polymerization in a kinetically controlled fashion. The kinetic barrier to spontaneous nucleation arises in part from positive cooperativity deriving from joint-neighbor capture, where stable capture of incoming monomers requires straddling multiple subunits on a filament end. For programmable DNA self-assembly, it is likewise desirable to suppress spontaneous nucleation to enable powerful capabilities such as all-or-nothing assembly of nanostructures larger than a single DNA origami, ultrasensitive detection, and more robust algorithmic assembly. However, existing DNA assemblies use monomers with low coordination numbers that present an effective kinetic barrier only for slow, near-reversible growth conditions. Here we introduce crisscross polymerization of elongated slat monomers that engage beyond nearest neighbors which sustains the kinetic barrier under conditions that promote fast, irreversible growth. By implementing crisscross slats as single-stranded DNA, we attain strictly seed-initiated nucleation of crisscross ribbons with distinct widths and twists.


Assuntos
DNA/química , Polimerização , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , DNA de Cadeia Simples , Cinética , Microtúbulos/metabolismo
5.
J Cell Biol ; 207(6): 717-33, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25533843

RESUMO

Heterochromatin is a barrier to DNA repair that correlates strongly with elevated somatic mutation in cancer. CHD class II nucleosome remodeling activity (specifically CHD3.1) retained by KAP-1 increases heterochromatin compaction and impedes DNA double-strand break (DSB) repair requiring Artemis. This obstruction is alleviated by chromatin relaxation via ATM-dependent KAP-1S824 phosphorylation (pKAP-1) and CHD3.1 dispersal from heterochromatic DSBs; however, how heterochromatin compaction is actually adjusted after CHD3.1 dispersal is unknown. In this paper, we demonstrate that Artemis-dependent DSB repair in heterochromatin requires ISWI (imitation switch)-class ACF1-SNF2H nucleosome remodeling. Compacted chromatin generated by CHD3.1 after DNA replication necessitates ACF1-SNF2H-mediated relaxation for DSB repair. ACF1-SNF2H requires RNF20 to bind heterochromatic DSBs, underlies RNF20-mediated chromatin relaxation, and functions downstream of pKAP-1-mediated CHD3.1 dispersal to enable DSB repair. CHD3.1 and ACF1-SNF2H display counteractive activities but similar histone affinities (via the plant homeodomains of CHD3.1 and ACF1), which we suggest necessitates a two-step dispersal and recruitment system regulating these opposing chromatin remodeling activities during DSB repair.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA por Junção de Extremidades , DNA Helicases/metabolismo , Heterocromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Endonucleases , Heterocromatina/metabolismo , Histonas/metabolismo , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA