RESUMO
Protein kinase C (PKC) isozymes have remained elusive cancer targets despite the unambiguous tumor promoting function of their potent ligands, phorbol esters, and the prevalence of their mutations. We analyzed 8% of PKC mutations identified in human cancers and found that, surprisingly, most were loss of function and none were activating. Loss-of-function mutations occurred in all PKC subgroups and impeded second-messenger binding, phosphorylation, or catalysis. Correction of a loss-of-function PKCß mutation by CRISPR-mediated genome editing in a patient-derived colon cancer cell line suppressed anchorage-independent growth and reduced tumor growth in a xenograft model. Hemizygous deletion promoted anchorage-independent growth, revealing that PKCß is haploinsufficient for tumor suppression. Several mutations were dominant negative, suppressing global PKC signaling output, and bioinformatic analysis suggested that PKC mutations cooperate with co-occurring mutations in cancer drivers. These data establish that PKC isozymes generally function as tumor suppressors, indicating that therapies should focus on restoring, not inhibiting, PKC activity.
Assuntos
Proteína Quinase C/química , Proteína Quinase C/genética , Animais , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Genes Supressores de Tumor , Xenoenxertos , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos Nus , Modelos Moleculares , Mutação , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Quinase C/metabolismo , Estrutura Terciária de ProteínaRESUMO
Could the phenomenon of catch bonding-force-strengthened cellular adhesion-play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here, we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant microscale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific antiadhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example, leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation.
Assuntos
Anemia Falciforme , Laminina , Humanos , Laminina/metabolismo , Eritrócitos , Adesão Celular , Eritrócitos AnormaisRESUMO
Coating defects often arise during application in the flash stage, which constitutes the â¼10 min interval immediately following film application when the solvent evaporates. Understanding the transient rheology and kinematics of a coating system is necessary to avoid defects such as sag, which results in undesirable appearance. A new technique named variable angle inspection microscopy (VAIM) aimed at measuring these phenomena was developed and is summarized herein. The essence of this new, non-invasive, rheological technique is the measurement of a flow field in response to a known gravitational stress. VAIM was used to measure the flow profile through a volume of a liquid thin film at an arbitrary orientation. Flow kinematics of the falling thin film was inferred from particle tracking measurements. Initial benchmarking measurements in the absence of drying tracked the velocity of silica probe particles in â¼140 µm thick films of known viscosity, much greater than water, at incline angles of 5° and 10°. Probe particles were tracked through the entire thickness of the film and at speeds as high as â¼100 µm/s. The sag flow field was well resolved in â¼10 µm thick cross sections, and in general the VAIM measurements were highly reproducible. Complementary profilometer measurements of film thinning were utilized to predict sag velocities with a known model. The model predictions showed good agreement with measurements, which validated the effectiveness of this new method in relating material properties and flow kinematics.
RESUMO
Tok-tokkies are one of the most iconic lineages within Tenebrionidae. In addition to containing some of the largest darkling beetles, this tribe is recognized for its remarkable form of sexual communication known as substrate tapping. Nevertheless, the phylogenetic relationships within the group remain poorly understood. This study investigates the usefulness of female terminalia morphology for delimiting Sepidiini and reconstructing relationships among it. Data on the structure of the ovipositors, genital tubes and spicula ventrali have been generated for >200 species representing 28 Pimeliinae tribes. This dataset was used in a comparative analysis at the subfamilial level, which resulted in recognition of several unique features of tok-tokkie terminalia. Additionally, new features linking phenotypically challenging tribes also were recovered (Cryptochilini + Idisiini + Pimeliini). Secondly, 23 characters linked to the structure of female terminalia were defined for tok-tok beetles. Cladistic analysis demonstrates the nonmonophyletic nature of most of the recognized subtribes. The morphological dataset was analysed separately and in combination with available molecular data (CAD, Wg, cox1, cox2, 28S). All obtained topologies were largely congruent, supporting the following changes: Palpomodina Kaminski & Gearner subtr.n. is erected to accommodate the genera Namibomodes and Palpomodes; Argenticrinis and Bombocnodulus are transferred from Hypomelina to Molurina; 153 species and subspecies previously classified within Psammodes are distributed over three separate genera (Mariazofia Kaminski nom.n., Piesomera stat.r., Psammodes sens.n.). Psammodes sklodowskae Kaminski & Gearner sp.n. is described. Preliminary investigation of the ovipositor of Mariazofia basuto (Koch) comb.n. was carried out with the application of microcomputed tomography, illuminating the muscular system as a reliable reference point for recognizing homologous elements in highly modified ovipositors.
Assuntos
Besouros , Animais , Feminino , Filogenia , Microtomografia por Raio-X , Sorogrupo , GenitáliaRESUMO
Micrometer scale colloidal particles experiencing â¼kT scale interactions and suspended in a fluid are relevant to a broad spectrum of applications. Often, colloidal particles are anisotropic, either by design or by nature. Yet, there are few techniques by which â¼kT scale interactions of anisotropic particles can be measured. Herein, we present the initial development of scattering morphology resolved total internal reflection microscopy (SMR-TIRM). The hypothesis of this work is that the morphology of light scattered by an anisotropic particle from an evanescent wave is a sensitive function of particle orientation. This hypothesis was tested with experiments and simulations mapping the scattered light from colloidal ellipsoids at systemically varied orientations. Scattering morphologies were first fitted with a two-dimensional (2D) Gaussian surface. The fitted morphology was parameterized by the morphology's orientation angle MÏ and aspect ratio MAR. Data from both experiments and simulations show MÏ to be a function of the particle azimuthal angle, while MAR was a sensitive function of the polar angle. This analysis shows that both azimuthal and polar angles of a colloidal ellipsoid could be resolved from scattering morphology as well or better than using bright-field microscopy. The integrated scattering intensity, which will be used for determining the separation distance, was also found to be a sensitive function of particle orientation. A procedure for interpreting these confounding effects was developed that in principle would uniquely determine the separation distance, the azimuthal angle, and the polar angle. Tracking these three quantities is necessary for calculating the potential energy landscape sampled by a colloidal ellipsoid.
RESUMO
This article describes the simulated Brownian motion of a sphere comprising hemispheres of unequal zeta potential (i.e., "Janus" particle) very near a wall. The simulation tool was developed and used to assist in the methodology development for applying Total Internal Reflection Microscopy (TIRM) to anisotropic particles. Simulations of the trajectory of a Janus sphere with cap density matching that of the base particle very near a boundary were used to construct 3D potential energy landscapes that were subsequently used to infer particle and solution properties, as would be done in a TIRM measurement. Results showed that the potential energy landscape of a Janus sphere has a transition region at the location of the boundary between the two Janus halves, which depended on the relative zeta potential magnitude. The potential energy landscape was fit to accurately obtain the zeta potential of each hemisphere, particle size, minimum potential energy position and electrolyte concentration, or Debye length. We also determined the appropriate orientation bin size and regimes over which the potential energy landscape should be fit to obtain system properties. Our simulations showed that an experiment may require more than 106 observations to obtain a suitable potential energy landscape as a consequence of the multivariable nature of observations for an anisotropic particle. These results illustrate important considerations for conducting TIRM for anisotropic particles.
RESUMO
The synthesis of nanoparticle clusters, also referred to as colloidal clusters or colloidal molecules, is being studied intensively as a model system for small molecule interactions as well as for the directed self-assembly of advanced materials. This paper describes a technique for the interfacial assembly of planar colloidal clusters using a combination of top-down lithographic surface modification and bottom-up Langmuir-Blodgett deposition. Micrometer sized polystyrene latex particles were deposited onto a chemically modified substrate from a decane-water interface with Langmuir-Blodgett deposition. The surface of the substrate contained hydrophilic domains of various size, spacing, and shape, while the remainder of the substrate was hydrophobic. Particles selectively deposited onto hydrophilic regions from the decane-water interface. The number of deposited particles depended on the size of each patch, thereby demonstrating that tuning cluster size is possible by engineering patch geometry. Following deposition, the clusters were permanently bonded with temperature annealing and then removed from the substrate via sonication. The permanently bonded planar colloidal clusters were stable in an aqueous environment and at a decane-water interface laden with isotropic colloidal particles. The method is a simple and fast way to synthesize colloidal clusters with few limitations on particle chemistry, composition, and shape.
RESUMO
Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.
Assuntos
Aerossóis/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Aerossóis/química , Aeronaves , Alabama , Butadienos/química , Hemiterpenos/química , Hidrólise , Espectrometria de Massas/métodos , Monoterpenos/química , Compostos de Nitrogênio/análise , Compostos de Nitrogênio/química , Material Particulado/química , Pentanos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sulfatos/análise , Sulfatos/química , Água/químicaRESUMO
The two-particle interaction between 3.1-µm-diameter polystyrene latex particles at a decane-water interface was measured with time-shared optical tweezers. The water subphase contained either 0.103 mM RbCl or 0.0342 mM MgCl2, which have hydrated cations of different size but identical anions. The choice of both the anion and the concentrations makes a comparison with published data on NaCl possible and also isolates the effect of the nature of the cation on the electrostatic interaction. The measured magnitude of the dipolar force and the relative changes as a function of electrolyte were in quantitative agreement with predictions from a recently published model that uses the Langevin-Poisson-Boltzmann equation including steric effects and the polarization saturation of the medium to predict the dipolar interaction (Frydel, D.; Oettel, M. Phys. Chem. Chem. Phys. 2011, 13, 4109-4118). These results support the hypothesis that a condensed layer of counterions contributes to the electrostatic interaction between colloidal particles at an oil-water interface. Although it has been suggested that the electrostatic interactions between particles at liquid interfaces could serve as a sensitive probe of the structural details of the electric double layer, both the model predictions and experimental measurements showed a maximum change of only ~25% in the magnitude of the interaction with a change in electrolyte under the conditions tested. The ability to resolve this small change was confounded by the heterogeneous nature of the interaction. Thus, despite the apparent importance of the choice of electrolyte, the subtlety of competing effects makes it unlikely that colloidal force measurements could be used to probe the fine structure of the electric double layer.
RESUMO
Carbon black slurry electrodes are an effective means to improve flow battery performance by increasing the active surface area necessary for electrochemical reactions with a cost-effective material. Current challenges with this specific flow battery chemistry include the stability and flowability of the carbon black suspensions, especially in response to formulation choices. Advancing the manufacturing, operation, and performance of these redox flow batteries requires a deeper understanding of how slurry formulation impacts its rheological profile and ultimately battery performance. In response to this need, the linear and nonlinear rheological responses of activated carbon (AC) based slurry electrode materials used in an all-iron flow battery in the presence of a nonionic surfactant (Triton X-100) were measured. Results from these measurements show the slurry is a colloidal gel with elasticity remaining constant despite increasing surfactant concentration until α (= Csurf/CAC) < 0.65. However, at α ≥ 0.65, the slurry abruptly transitions to a fluid with no measurable yield stress. This critical surfactant concentration at which the rheological profile undergoes a dynamic change matches the concentration found previously for gel collapse of this system. Moreover, this transition is accompanied by a complete loss of electrical conductivity. From these data we conclude the site specific adsorption of surfactant molecules often used in slurry formulation has a significant and dramatic impact on the stability and flowability of these suspensions. Work presented herein demonstrates the importance of additive choices when formulating a slurry electrode.
RESUMO
APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.
RESUMO
Many brain-computer interfaces require a high mental workload. Recent research has shown that this could be greatly alleviated through machine learning, inferring user intentions via reactive brain responses. These signals are generated spontaneously while users merely observe assistive robots performing tasks. Using reactive brain signals, existing studies have addressed robot navigation tasks with a very limited number of potential target locations. Moreover, they use only binary, error-vs-correct classification of robot actions, leaving more detailed information unutilised. In this study a virtual robot had to navigate towards, and identify, target locations in both small and large grids, wherein any location could be the target. For the first time, we apply a system utilising detailed EEG information: 4-way classification of movements is performed, including specific information regarding when the target is reached. Additionally, we classify whether targets are correctly identified. Our proposed Bayesian strategy infers the most likely target location from the brain's responses. The experimental results show that our novel use of detailed information facilitates a more efficient and robust system than the state-of-the-art. Furthermore, unlike state-of-the-art approaches, we show scalability of our proposed approach: By tuning parameters appropriately, our strategy correctly identifies 98% of targets, even in large search spaces.
Assuntos
Interfaces Cérebro-Computador , Neurorretroalimentação , Robótica , Robótica/métodos , Teorema de Bayes , Encéfalo/fisiologia , Eletroencefalografia/métodosRESUMO
HYPOTHESIS: Carbon black particles act as electronically conductive additives in the slurry electrodes used in electrochemical redox flow batteries. Modifying the carbon black slurry formulation with the addition of a nonionic surfactant could impart improved particle dispersion, gravitational stability, and flowability leading to better battery performance. EXPERIMENTS: Carbon black particles were dispersed in 1 M H2SO4 with volume fractions Φ = 0.01 to 0.06 and a nonionic surfactant (Triton X-100) concentration of csurf. = 0, 0.05, and 0.1 M. Particle size was characterized using microscopy and surfactant adsorption using UV-vis spectroscopy. Sedimentation kinetics was measured using a custom camera set-up that tracks the height of the settling particle bed. Rheology experiments were conducted to measure linear viscoelasticity and shear flow behavior. FINDINGS: The sedimentation dynamics of the slurry resembled that of a gel collapse. At short times we observed fast sedimentation associated with structural gel collapse and at long times very slow sedimentation associated with compaction of the sediment. Rheological investigations revealed that the slurry indeed behaved like colloidal gels. Addition of nonionic surfactant at α (= (csurf./cCB)) < 0.75 improved particle dispersion and increased gel elasticity. However, α> 0.75 led to a weaker gel that exhibits a fast 'catastrophic collapse' under gravity.
RESUMO
Single-particle longitudinal motion and pairwise lateral motion was investigated while the particles were excited by an oscillating electric field directed normally to an electrode proximate to the particles. The electrode was polarized over a range of potential insufficient to drive electrochemical reactions, a range called the "ideally polarizable region". The particles' motion was qualitatively dependent on the choice of electrolyte despite the absence of electrochemical reactions. As when electrochemical reactions were not explicitly excluded, the phase angle θ between particle height and electric field correlated with the particles' separation or aggregation during excitation. A simple harmonic oscillator model of the particles' response, including colloidal and hydrodynamic forces and including the Basset force not previously cited in this context, showed how θ can increase from 0° at low frequencies, cross 90° at â¼100 Hz, and then increase to 180° as frequency was increased. The model captured the essence of experimental observations discussed here and in earlier works. This is the first a priori prediction of θ for this problem.
RESUMO
A colloidal particle is often termed "Janus" when some portion of its surface is coated by a second material which has distinct properties from the native particle. The anisotropy of Janus particles enables unique behavior at interfaces. However, rigorous methodologies to predict Janus particle dynamics at interfaces are required to implement these particles in complex fluid applications. Previous work studying Janus particle dynamics does not consider van der Waals interactions and realistic, nonuniform coating morphology. Here we develop semianalytic equations to accurately calculate the potential landscape, including van der Waals interactions, of a Janus particle with nonuniform coating thickness above a solid boundary. The effects of both nonuniform coating thickness and van der Waals interactions significantly influence the potential landscape of the particle, particularly in high ionic strength solutions, where the particle samples positions very close to the solid boundary. The equations developed herein facilitate more simple, accurate, and less computationally expensive characterization of conservative interactions experienced by a confined Janus particle than previous methods.
RESUMO
Most mental disorders, such as addictive diseases or schizophrenia, are characterized by impaired cognitive function and behavior control originating from disturbances within prefrontal neural networks. Their often chronic reoccurring nature and the lack of efficient therapies necessitate the development of new treatment strategies. Brain-computer interfaces, equipped with multiple sensing and stimulation abilities, offer a new toolbox whose suitability for diagnosis and therapy of mental disorders has not yet been explored. This study, therefore, aimed to develop a biocompatible and multimodal neuroprosthesis to measure and modulate prefrontal neurophysiological features of neuropsychiatric symptoms. We used a 3D-printing technology to rapidly prototype customized bioelectronic implants through robot-controlled deposition of soft silicones and a conductive platinum ink. We implanted the device epidurally above the medial prefrontal cortex of rats and obtained auditory event-related brain potentials in treatment-naïve animals, after alcohol administration and following neuromodulation through implant-driven electrical brain stimulation and cortical delivery of the anti-relapse medication naltrexone. Towards smart neuroprosthetic interfaces, we furthermore developed machine learning algorithms to autonomously classify treatment effects within the neural recordings. The neuroprosthesis successfully captured neural activity patterns reflecting intact stimulus processing and alcohol-induced neural depression. Moreover, implant-driven electrical and pharmacological stimulation enabled successful enhancement of neural activity. A machine learning approach based on stepwise linear discriminant analysis was able to deal with sparsity in the data and distinguished treatments with high accuracy. Our work demonstrates the feasibility of multimodal bioelectronic systems to monitor, modulate and identify healthy and affected brain states with potential use in a personalized and optimized therapy of neuropsychiatric disorders.
RESUMO
Studies have shown the possibility of using brain signals that are automatically generated while observing a navigation task as feedback for semi-autonomous control of a robot. This allows the robot to learn quasi-optimal routes to intended targets. We have combined the subclassification of two different types of navigational errors, with the subclassification of two different types of correct navigational actions, to create a 4-way classification strategy, providing detailed information about the type of action the robot performed. We used a 2-stage stepwise linear discriminant analysis approach, and tested this using brain signals from 8 and 14 participants observing two robot navigation tasks. Classification results were significantly above the chance level, with mean overall accuracy of 44.3% and 36.0% for the two datasets. As a proof of concept, we have shown that it is possible to perform fine-grained, 4-way classification of robot navigational actions, based on the electroencephalogram responses of participants who only had to observe the task. This study provides the next step towards comprehensive implicit brain-machine communication, and towards an efficient semi-autonomous brain-computer interface.
Assuntos
Interfaces Cérebro-Computador , Robótica , Encéfalo , Análise Discriminante , Eletroencefalografia , HumanosRESUMO
The dynamics of anisotropic nano- to micro scale colloidal particles in confined environments, either near neighboring particles or boundaries, is relevant to a wide range of applications. We utilized Brownian dynamics simulations to predict the translational and rotational fluctuations of a Janus sphere with a cap of nonmatching density near a boundary. The presence of the cap significantly impacted the rotational dynamics of the particle as a consequence of gravitational torque at experimentally relevant conditions. Gravitational torque dominated stochastic torque for a particle >1 µm in diameter and with a 20-nm-thick gold cap. Janus particles at these conditions sampled mostly cap-down or "quenched" orientations. Although the results summarized herein showed that particles of smaller diameter (<1 µm) with a thin gold coating (<5 nm) behave similarly to an isotropic particle, small increases in either particle diameter or coating thickness quenched the polar rotation of the particle. Histogram landscapes of the separation distance from the boundary and orientation observations of particles with larger diameters or thicker gold coatings were mostly populated with quenched configurations. Finally, the histogram landscapes were inverted to obtain the potential energy landscapes, providing a road map for experimental data to be interpreted.
RESUMO
Studies have established that it is possible to differentiate between the brain's responses to observing correct and incorrect movements in navigation tasks. Furthermore, these classifications can be used as feedback for a learning-based BCI, to allow real or virtual robots to find quasi-optimal routes to a target. However, when navigating it is important not only to know we are moving in the right direction toward a target, but also to know when we have reached it. We asked participants to observe a virtual robot performing a 1-dimensional navigation task. We recorded EEG and then performed neurophysiological analysis on the responses to two classes of correct movements: those that moved closer to the target but did not reach it, and those that did reach the target. Further, we used a stepwise linear classifier on time-domain features to differentiate the classes on a single-trial basis. A second data set was also used to further test this single-trial classification. We found that the amplitude of the P300 was significantly greater in cases where the movement reached the target. Interestingly, we were able to classify the EEG signals evoked when observing the two classes of correct movements against each other with mean overall accuracy of 66.5 and 68.0% for the two data sets, with greater than chance levels of accuracy achieved for all participants. As a proof of concept, we have shown that it is possible to classify the EEG responses in observing these different correct movements against each other using single-trial EEG. This could be used as part of a learning-based BCI and opens a new door toward a more autonomous BCI navigation system.
RESUMO
While working on a revision of Triorophus LeConte, 1851 we examined type material for the genus. One species, Triorophus punctatus LeConte, 1851 (Figs. 1a-1e), was described from a dead, partial specimen (Type 4475, Museum of Comparative Zoology, Harvard University) collected at "Vallecitas," California in October or November of 1850 (LeConte, 1851). The locality likely refers to Vallecito, a contemporary United States Army depot and stage station (Roberts, 1988) located on the western edge of the Colorado Desert in eastern San Diego County (32.9755°, -116.35°).