Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chembiochem ; 18(11): 1022-1026, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334484

RESUMO

Amine transaminase (ATA) catalyzing stereoselective amination of prochiral ketones is an attractive alternative to transition metal catalysis. As wild-type ATAs do not accept sterically hindered ketones, efforts to widen the substrate scope to more challenging targets are of general interest. We recently designed ATAs to accept aromatic and thus planar bulky amines, with a sequence-based motif that supports the identification of novel enzymes. However, these variants were not active against 2,2-dimethyl-1-phenyl-propan-1-one, which carries a bulky tert-butyl substituent adjacent to the carbonyl function. Here, we report a solution for this type of substrate. The evolved ATAs perform asymmetric synthesis of the respective R amine with high conversions by using either alanine or isopropylamine as amine donor.


Assuntos
Aminas , Evolução Molecular Direcionada , Engenharia de Proteínas/métodos , Transaminases/genética , Aminação , Substituição de Aminoácidos , Biocatálise , Simulação por Computador , Especificidade por Substrato
2.
Chembiochem ; 18(17): 1703-1706, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28722796

RESUMO

NADP(H)-dependent imine reductases (IREDs) are of interest in biocatalytic research due to their ability to generate chiral amines from imine/iminium substrates. In reaction protocols involving IREDs, glucose dehydrogenase (GDH) is generally used to regenerate the expensive cofactor NADPH by oxidation of d-glucose to gluconolactone. We have characterized different IREDs with regard to reduction of a set of bicyclic iminium compounds and have utilized 1 H NMR and GC analyses to determine degree of substrate conversion and product enantiomeric excess (ee). All IREDs reduced the tested iminium compounds to the corresponding chiral amines. Blank experiments without IREDs also showed substrate conversion, however, thus suggesting an iminium reductase activity of GDH. This unexpected observation was confirmed by additional experiments with GDHs of different origin. The reduction of C=N bonds with good levels of conversion (>50 %) and excellent enantioselectivity (up to >99 % ee) by GDH represents a promiscuous catalytic activity of this enzyme.


Assuntos
Glucose 1-Desidrogenase/metabolismo , Iminas/metabolismo , Bacillus subtilis/enzimologia , Biocatálise , Cromatografia Gasosa , Glucose/metabolismo , Iminas/química , Espectroscopia de Ressonância Magnética , NADP/metabolismo , Oxirredução , Estereoisomerismo , Especificidade por Substrato
3.
Org Biomol Chem ; 14(43): 10249-10254, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27739550

RESUMO

Application of amine transaminases (ATAs) for stereoselective amination of prochiral ketones represents an environmentally benign and economically attractive alternative to transition metal catalyzed asymmetric synthesis. However, the restrictive substrate scope has limited the conversion typically to non-sterically demanding scaffolds. Recently, we reported on the identification and design of fold class I ATAs that effect a highly selective asymmetric synthesis of a set of chiral aromatic bulky amines from the corresponding ketone precursors in high yield. However, for the specific amine synthetic approach extension targeted here, the selective formation of an exo- vs. endo-isomer, these biocatalysts required additional refinement. The chosen substrate (exo-3-amino-8-aza-bicyclo[3.2.1]oct-8-yl-phenyl-methanone), apart from its pharmacological relevance, is a demanding target for ATAs as the bridged bicyclic ring provides substantial steric challenges. Protein engineering combining rational design and directed evolution enabled the identification of an ATA variant which catalyzes the specific synthesis of the target exo-amine with >99.5% selectivity.


Assuntos
Aminas/química , Aminas/síntese química , Engenharia de Proteínas , Transaminases/genética , Transaminases/metabolismo , Biocatálise , Domínio Catalítico , Técnicas de Química Sintética , Cetonas/química , Modelos Moleculares , Rhodobacteraceae/enzimologia , Estereoisomerismo , Especificidade por Substrato , Transaminases/química
4.
Chembiochem ; 16(12): 1749-56, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26044455

RESUMO

Recent investigations on imine reductases (IREDs) have enriched the toolbox of potential catalysts for accessing chiral amines, which are important building blocks for the pharmaceutical industry. Herein, we describe the characterization of 20 new IREDs. A C-terminal domain clustering of the bacterial protein-sequence space was performed to identify the novel IRED candidates. Each of the identified enzymes was characterized against a set of nine cyclic imine model substrates. A refined clustering towards putative active-site residues was performed and was consistent both with our screening and previously reported results. Finally, preparative scale experiments on a 100 mg scale with two purified IREDs, IR_20 from Streptomyces tsukubaensis and IR_23 from Streptomyces vidiochromogenes, were carried out to provide (R)-2-methylpiperidine in 98% ee (71% yield) and (R)-1-methyl-1,2,3,4-tetrahydroisoquinoline in >98% ee (82% yield).


Assuntos
Proteínas de Bactérias/genética , Iminas/química , Modelos Moleculares , Oxirredutases/genética , Proteínas de Bactérias/química , Domínio Catalítico , Estrutura Molecular , Oxirredutases/química , Oxirredutases/metabolismo , Bibliotecas de Moléculas Pequenas/química
5.
Microb Cell Fact ; 14: 82, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26062974

RESUMO

BACKGROUND: Getting access to authentic human drug metabolites is an important issue during the drug discovery and development process. Employing recombinant microorganisms as whole-cell biocatalysts constitutes an elegant alternative to organic synthesis to produce these compounds. The present work aimed for the generation of an efficient whole-cell catalyst based on the flavin monooxygenase isoform 2 (FMO2), which is part of the human phase I metabolism. RESULTS: We show for the first time the functional expression of human FMO2 in E. coli. Truncations of the C-terminal membrane anchor region did not result in soluble FMO2 protein, but had a significant effect on levels of recombinant protein. The FMO2 biocatalysts were employed for substrate screening purposes, revealing trifluoperazine and propranolol as FMO2 substrates. Biomass cultivation on the 100 L scale afforded active catalyst for biotransformations on preparative scale. The whole-cell conversion of trifluoperazine resulted in perfectly selective oxidation to 48 mg (46% yield) of the corresponding N (1)-oxide with a purity >98%. CONCLUSIONS: The generated FMO2 whole-cell catalysts are not only useful as screening tool for human metabolites of drug molecules but more importantly also for their chemo- and regioselective preparation on the multi-milligram scale.


Assuntos
Escherichia coli/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Preparações Farmacêuticas/metabolismo , Biocatálise , Dinitrocresóis/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Oxigenases de Função Mista/genética , Propranolol/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Trifluoperazina/metabolismo
6.
Chimia (Aarau) ; 64(11): 780-1, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21197839

RESUMO

Taking up the common challenges in biocatalysis, a group of industrialists decided to react with a bottom-up solution, and created the Swiss Industrial Biocatalysis Consortium (SIBC). The Swiss Industrial Biocatalysis Consortium is a pre-competitive working group to better implement and utilize existing know-how and resources in biocatalysis, and to influence and shape the economic and educational political environment. Recent examples of activities are outlined.


Assuntos
Biocatálise , Indústrias , Biotecnologia , Suíça
7.
J Org Chem ; 73(13): 4895-902, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18517254

RESUMO

A new, enantioselective synthesis of the influenza neuraminidase inhibitor prodrug oseltamivir phosphate 1 (Tamiflu) and its enantiomer ent-1 starting from cheap, commercially available 2,6-dimethoxyphenol 10 is described. The main features of this approach comprise the cis-hydrogenation of 5-(1-ethyl-propoxy)-4,6-dimethoxy-isophthalic acid diethyl ester (6a) and the desymmetrization of the resultant all-cis meso-diesters 7a and 7b, respectively. Enzymatic hydrolysis of the meso-diester 7b with pig liver esterase afforded the (S)-monoacid 8b, which was converted into cyclohexenol 17 via a Curtius degradation and a base-catalyzed decarboxylative elimination of the Boc-protected oxazolidinone 14. Introduction of the second amino function via S(N)2 substitution of the corresponding triflate 18 with NaN3 followed by azide reduction, N-acetylation, and Boc-deprotection gave oseltamivir phosphate 1 in a total of 10 steps and an overall yield of approximately 30%. The enantiomer ent-1 was similarly obtained via an enzymatic desymmetrization of meso-diester 7a with Aspergillus oryzae lipase, providing the (R)-monoacid ent-8a.


Assuntos
Antivirais/síntese química , Ácidos Dicarboxílicos/química , Oseltamivir/síntese química , Estrutura Molecular
8.
Org Lett ; 19(18): 4806-4809, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28858516

RESUMO

A highly efficient asymmetric synthesis of the Akt kinase inhibitor ipatasertib (1) is reported. The bicyclic pyrimidine 2 starting material was prepared via a nitrilase biocatalytic resolution, halogen-metal exchange/anionic cyclization, and a highly diastereoselective biocatalytic ketone reduction as key steps. The route also features a halide activated, Ru-catalyzed asymmetric hydrogenation of a vinylogous carbamic acid to produce α-aryl-ß-amino acid 3 in high yield and enantioselectivity. The API was assembled in a convergent manner through a late-stage amidation/deprotection/monohydrochloride salt formation sequence.

9.
Nat Chem ; 8(11): 1076-1082, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27768108

RESUMO

The use of transaminases to access pharmaceutically relevant chiral amines is an attractive alternative to transition-metal-catalysed asymmetric chemical synthesis. However, one major challenge is their limited substrate scope. Here we report the creation of highly active and stereoselective transaminases starting from fold class I. The transaminases were developed by extensive protein engineering followed by optimization of the identified motif. The resulting enzymes exhibited up to 8,900-fold higher activity than the starting scaffold and are highly stereoselective (up to >99.9% enantiomeric excess) in the asymmetric synthesis of a set of chiral amines bearing bulky substituents. These enzymes should therefore be suitable for use in the synthesis of a wide array of potential intermediates for pharmaceuticals. We also show that the motif can be engineered into other protein scaffolds with sequence identities as low as 70%, and as such should have a broad impact in the field of biocatalytic synthesis and enzyme engineering.


Assuntos
Aminas/metabolismo , Transaminases/metabolismo , Aminas/química , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cinética , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Quinonas/química , Quinonas/metabolismo , Estereoisomerismo , Especificidade por Substrato , Transaminases/química , Transaminases/genética
10.
J Biotechnol ; 235: 3-10, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27021957

RESUMO

Human xanthine oxidoreductase (XOR), which is responsible for the final steps of the purine metabolism pathway and involved in oxidative drug metabolism, was successfully expressed in Escherichia coli BL21(DE3) Gold. Recombinant human (rh) XOR yielded higher productivity with the gene sequence optimized for expression in E.coli than with the native gene sequence. Induction of XOR expression with lactose or IPTG resulted in complete loss of activity whereas shake flasks cultures using media rather poor in nutrients resulted in functional XOR expression in the stationary phase. LB medium was used for a 25L fermentation in fed-batch mode, which led to a 5 fold increase of the enzyme productivity when compared to cultivation in shake flasks. Quinazoline was used as a substrate on the semi-preparative scale using an optimized whole cell biotransformation protocol, yielding 73mg of the isolated product, 4-quinazolinone, from 104mg of starting material.


Assuntos
Escherichia coli/genética , Proteínas Recombinantes , Xantina Oxidase , Biotecnologia , Fermentação , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Xantina Oxidase/química , Xantina Oxidase/genética , Xantina Oxidase/isolamento & purificação , Xantina Oxidase/metabolismo
11.
J Med Chem ; 56(23): 9789-801, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24224654

RESUMO

Starting from the weakly active dual CatS/K inhibitor 5, structure-based design supported by X-ray analysis led to the discovery of the potent and selective (>50,000-fold vs CatK) cyclopentane derivative 22 by exploiting specific ligand-receptor interactions in the S2 pocket of CatS. Changing the central cyclopentane scaffold to the analogous pyrrolidine derivative 57 decreased the enzyme as well as the cell-based activity significantly by 24- and 69-fold, respectively. The most promising scaffold identified was the readily accessible proline derivative (e.g., 79). This compound, with an appealing ligand efficiency (LE) of 0.47, included additional structural modifications binding in the S1 and S3 pockets of CatS, leading to favorable in vitro and in vivo properties. Compound 79 reduced IL-2 production in a transgenic DO10.11 mouse model of antigen presentation in a dose-dependent manner with an ED50 of 5 mg/kg.


Assuntos
Catepsinas/antagonistas & inibidores , Inibidores de Cisteína Proteinase/síntese química , Animais , Ciclopentanos/química , Inibidores de Cisteína Proteinase/farmacocinética , Humanos , Camundongos , Prolina/análogos & derivados , Relação Estrutura-Atividade
12.
Chem Commun (Camb) ; 48(48): 6001-3, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22576266

RESUMO

A panel of human flavin monooxygenases were heterologously expressed in E. coli to obtain ready-to-use biocatalysts for the in vitro preparation of human drug metabolites. Moclobemide-N-oxide (65 mg) was the first high-priced metabolite prepared with recombinant hFMO3 on the multi-milligram scale.


Assuntos
Escherichia coli/química , Escherichia coli/metabolismo , Flavinas/química , Flavinas/metabolismo , Oxigenases de Função Mista/química , Moclobemida/síntese química , Enzimas , Humanos , Oxigenases de Função Mista/metabolismo , Moclobemida/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA