Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mSystems ; : e0078924, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150244

RESUMO

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used in clinical microbiology laboratories for bacterial identification but its use for detection of antimicrobial resistance (AMR) remains limited. Here, we used MALDI-TOF MS with artificial intelligence (AI) approaches to successfully predict AMR in Pseudomonas aeruginosa, a priority pathogen with complex AMR mechanisms. The highest performance was achieved for modern ß-lactam/ß-lactamase inhibitor drugs, namely, ceftazidime/avibactam and ceftolozane/tazobactam. For these drugs, the model demonstrated area under the receiver operating characteristic curve (AUROC) of 0.869 and 0.856, specificity of 0.925 and 0.897, and sensitivity of 0.731 and 0.714, respectively. As part of this work, we developed dynamic binning, a feature engineering technique that effectively reduces the high-dimensional feature set and has wide-ranging applicability to MALDI-TOF MS data. Compared to conventional feature engineering approaches, the dynamic binning method yielded highest performance in 7 of 10 antimicrobials. Moreover, we showcased the efficacy of transfer learning in enhancing the AUROC performance for 8 of 11 antimicrobials. By assessing the contribution of features to the model's prediction, we identified proteins that may contribute to AMR mechanisms. Our findings demonstrate the potential of combining AI with MALDI-TOF MS as a rapid AMR diagnostic tool for Pseudomonas aeruginosa.IMPORTANCEPseudomonas aeruginosa is a key bacterial pathogen that causes significant global morbidity and mortality. Antimicrobial resistance (AMR) emerges rapidly in P. aeruginosa and is driven by complex mechanisms. Drug-resistant P. aeruginosa is a major challenge in clinical settings due to limited treatment options. Early detection of AMR can guide antibiotic choices, improve patient outcomes, and avoid unnecessary antibiotic use. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid species identification in clinical microbiology. In this study, we repurposed mass spectra generated by MALDI-TOF and used them as inputs for artificial intelligence approaches to successfully predict AMR in P. aeruginosa for multiple key antibiotic classes. This work represents an important advance toward using MALDI-TOF as a rapid AMR diagnostic for P. aeruginosa in clinical settings.

2.
Infect Control Hosp Epidemiol ; 45(6): 709-716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38344902

RESUMO

OBJECTIVES: New Delhi metallo-ß-lactamases (NDMs) are major contributors to the spread of carbapenem resistance globally. In Australia, NDMs were previously associated with international travel, but from 2019 we noted increasing incidence of NDM-positive clinical isolates. We investigated the clinical and genomic epidemiology of NDM carriage at a tertiary-care Australian hospital from 2016 to 2021. METHODS: We identified 49 patients with 84 NDM-carrying isolates in an institutional database, and we collected clinical data from electronic medical record. Short- and long-read whole genome sequencing was performed on all isolates. Completed genome assemblies were used to assess the genetic setting of blaNDM genes and to compare NDM plasmids. RESULTS: Of 49 patients, 38 (78%) were identified in 2019-2021 and only 11 (29%) of 38 reported prior travel, compared with 9 (82%) of 11 in 2016-2018 (P = .037). In patients with NDM infection, the crude 7-day mortality rate was 0% and the 30-day mortality rate was 14% (2 of 14 patients). NDMs were noted in 41 bacterial strains (ie, species and sequence type combinations). Across 13 plasmid groups, 4 NDM variants were detected: blaNDM-1, blaNDM-4, blaNDM-5, and blaNDM-7. We noted a change from a diverse NDM plasmid repertoire in 2016-2018 to the emergence of conserved blaNDM-1 IncN and blaNDM-7 IncX3 epidemic plasmids, with interstrain spread in 2019-2021. These plasmids were noted in 19 (50%) of 38 patients and 35 (51%) of 68 genomes in 2019-2021. CONCLUSIONS: Increased NDM case numbers were due to local circulation of 2 epidemic plasmids with extensive interstrain transfer. Our findings underscore the challenges of outbreak detection when horizontal transmission of plasmids is the primary mode of spread.


Assuntos
Surtos de Doenças , Plasmídeos , beta-Lactamases , Humanos , beta-Lactamases/genética , Plasmídeos/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Austrália/epidemiologia , Sequenciamento Completo do Genoma , Adulto , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/transmissão , Infecções por Enterobacteriaceae/microbiologia , Transferência Genética Horizontal , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA