Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur Heart J ; 41(37): 3564-3575, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901270

RESUMO

AIMS: Balance between inflammatory and reparative leucocytes allows optimal healing after myocardial infarction (MI). Interindividual heterogeneity evokes variable functional outcome complicating targeted therapy. We aimed to characterize infarct chemokine CXC-motif receptor 4 (CXCR4) expression using positron emission tomography (PET) and establish its relationship to cardiac outcome. We tested whether image-guided early CXCR4 directed therapy attenuates chronic dysfunction. METHODS AND RESULTS: Mice (n = 180) underwent coronary ligation or sham surgery and serial PET imaging over 7 days. Infarct CXCR4 content was elevated over 3 days after MI compared with sham (%ID/g, Day 1:1.1 ± 0.2; Day 3:0.9 ± 0.2 vs. 0.6 ± 0.1, P < 0.001), confirmed by flow cytometry and histopathology. Mice that died of left ventricle (LV) rupture exhibited persistent inflammation at 3 days compared with survivors (1.2 ± 0.3 vs. 0.9 ± 0.2% ID/g, P < 0.001). Cardiac magnetic resonance measured cardiac function. Higher CXCR4 signal at 1 and 3 days independently predicted worse functional outcome at 6 weeks (rpartial = -0.4, P = 0.04). Mice were treated with CXCR4 blocker AMD3100 following the imaging timecourse. On-peak CXCR4 blockade at 3 days lowered LV rupture incidence vs. untreated MI (8% vs. 25%), and improved contractile function at 6 weeks (+24%, P = 0.01). Off-peak CXCR4 blockade at 7 days did not improve outcome. Flow cytometry analysis revealed lower LV neutrophil and Ly6Chigh monocyte content after on-peak treatment. Patients (n = 50) early after MI underwent CXCR4 PET imaging and functional assessment. Infarct CXCR4 expression in acute MI patients correlated with contractile function at time of PET and on follow-up. CONCLUSION: Positron emission tomography imaging identifies early CXCR4 up-regulation which predicts acute rupture and chronic contractile dysfunction. Imaging-guided CXCR4 inhibition accelerates inflammatory resolution and improves outcome. This supports a molecular imaging-based theranostic approach to guide therapy after MI.


Assuntos
Infarto do Miocárdio , Tomografia Computadorizada por Raios X , Animais , Humanos , Camundongos , Imagem Molecular , Miocárdio , Tomografia por Emissão de Pósitrons , Receptores CXCR4 , Remodelação Ventricular
2.
Eur J Nucl Med Mol Imaging ; 42(2): 317-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25112398

RESUMO

UNLABELLED: Imaging of inflammation early after myocardial infarction (MI) is a promising approach to the guidance of novel molecular interventions that support endogenous healing processes. (18)F-FDG PET has been used, but may be complicated by physiological myocyte uptake. We evaluated the potential of two alternative imaging targets: lactoferrin binding by (68)Ga-citrate and somatostatin receptor binding by (68)Ga-DOTATATE. METHODS: C57Bl/6 mice underwent permanent coronary artery ligation. Serial PET imaging was performed 3 - 7 days after MI using (68)Ga-citrate, (68)Ga-DOTATATE, or (18)F-FDG with ketamine/xylazine suppression of myocyte glucose uptake. Myocardial perfusion was evaluated by (13)N-ammonia PET and cardiac geometry by contrast-enhanced ECG-gated CT. RESULTS: Mice exhibited a perfusion defect of 30 - 40% (of the total left ventricle) with apical anterolateral wall akinesia and thinning on day 7 after MI. (18)F-FDG with ketamine/xylazine suppression demonstrated distinct uptake in the infarct region, as well as in the border zone and remote myocardium. The myocardial standardized uptake value in MI mice was significantly higher than in healthy mice under ketamine/xylazine anaesthesia (1.9 ± 0.4 vs. 1.0 ± 0.1). (68)Ga images exhibited high blood pool activity with no specific myocardial uptake up to 90 min after injection (tissue-to-blood contrast 0.9). (68)Ga-DOTATATE was rapidly cleared from the blood, but myocardial SUV was very low (0.10 ± 0.03). CONCLUSION: Neither (68)Ga nor (68)Ga-DOTATATE is a useful alternative to (18)F-FDG for PET imaging of myocardial inflammation after MI in mice. Among the three tested approaches, (18)F-FDG with ketamine/xylazine suppression of cardiomyocyte uptake remains the most practical imaging marker of post-infarct inflammation.


Assuntos
Citratos/farmacocinética , Fluordesoxiglucose F18/farmacocinética , Gálio/farmacocinética , Infarto do Miocárdio/diagnóstico por imagem , Compostos Organometálicos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Animais , Inflamação/diagnóstico por imagem , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Imagem de Perfusão do Miocárdio , Tomografia por Emissão de Pósitrons
3.
Theranostics ; 9(1): 152-166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30662559

RESUMO

Ischemia triggers a complex tissue response involving vascular, metabolic and inflammatory changes. METHODS: We combined hybrid SPECT/CT or PET/CT nuclear imaging studies of perfusion, metabolism and inflammation with multicolor flow cytometry-based cell population analysis to comprehensively analyze the ischemic tissue response and to elucidate the cellular substrate of noninvasive molecular imaging techniques in a mouse model of hind limb ischemia. RESULTS: Comparative analysis of tissue perfusion with [99mTc]-Sestamibi and arterial influx with [99mTc]-labeled albumin microspheres by SPECT/CT revealed a distinct pattern of response to vascular occlusion: an early ischemic period of matched suppression of tissue perfusion and arterial influx, a subacute ischemic period of normalized arterial influx but impaired tissue perfusion, and a protracted post-ischemic period of hyperdynamic arterial and normalized tissue perfusion, indicating coordination of macrovascular and microvascular responses. In addition, the subacute period showed increased glucose uptake by [18F]-FDG PET/CT scanning as the metabolic response of viable tissue to hypoperfusion. This was associated with robust macrophage infiltration by flow cytometry, and glucose uptake studies identified macrophages as major contributors to glucose utilization in ischemic tissue. Furthermore, imaging with the TSPO ligand [18F]-GE180 showed a peaked response during the subacute phase due to preferential labeling of monocytes and macrophages, while imaging with [68Ga]-RGD, an integrin ligand, showed prolonged post-ischemic upregulation, which was attributed to labeling of macrophages and endothelial cells by flow cytometry. CONCLUSION: Combined nuclear imaging and cell population analysis reveals distinct components of the ischemic tissue response and associated cell subsets, which could be targeted for therapeutic interventions.


Assuntos
Extremidades/patologia , Isquemia/patologia , Isquemia/fisiopatologia , Animais , Artérias/patologia , Modelos Animais de Doenças , Inflamação/patologia , Metabolismo , Camundongos , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
4.
J Cereb Blood Flow Metab ; 37(6): 2049-2061, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27435624

RESUMO

Insult-associated blood-brain barrier leakage is strongly suggested to be a key step during epileptogenesis. In this study, we used three non-invasive translational imaging modalities, i.e. positron emission tomography, single photon emission computed tomography, and magnetic resonance imaging, to evaluate BBB leakage after an epileptogenic brain insult. Sprague-Dawley rats were scanned during early epileptogenesis initiated by status epilepticus. Positron emission tomography and single photon emission computed tomography scans were performed using the novel tracer [68Ga]DTPA or [99mTc]DTPA, respectively. Magnetic resonance imaging included T2 and post-contrast T1 sequence after infusion of Gd-DTPA, gadobutrol, or Gd-albumin. All modalities revealed increased blood-brain barrier permeability 48 h post status epilepticus, mainly in epileptogenesis-associated brain regions like hippocampus, piriform cortex, thalamus, or amygdala. In hippocampus, Gd-DTPA-enhanced T1 magnetic resonance imaging signal was increased by 199%, [68Ga]DTPA positron emission tomography by 37%, and [99mTc]DTPA single photon emission computed tomography by 56%. Imaging results were substantiated by histological detection of albumin extravasation. Comparison with quantitative positron emission tomography and single photon emission computed tomography shows that magnetic resonance imaging sequences successfully amplify the signal from a moderate amount of extravasated DTPA molecules, enabling sensitive detection of blood-brain barrier disturbance in epileptogenesis. Imaging of the disturbed blood-brain barrier will give further pathophysiologic insights, will help to stratify anti-epileptogenic treatment targeting blood-brain barrier integrity, and may serve as a prognostic biomarker.


Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Síndrome de Vazamento Capilar/diagnóstico por imagem , Permeabilidade Capilar/fisiologia , Epilepsia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Barreira Hematoencefálica/fisiopatologia , Síndrome de Vazamento Capilar/etiologia , Síndrome de Vazamento Capilar/fisiopatologia , Epilepsia/complicações , Epilepsia/fisiopatologia , Feminino , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão de Fóton Único/métodos
5.
J Pharm Biomed Anal ; 137: 146-150, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28119212

RESUMO

This paper describes the preparation of gallium-68 (68Ga) isotope labeled porous zirconia (ZrO2) nanoparticle (NP) platform of nearly 100nm diameter and its first pharmacokinetic and biodistribution evaluation accomplished with a microPET/CT (µPet/CT) imaging system. Objectives of the investigations were to provide a nanoparticle platform which can be suitable for specific delivery of various therapeutic drugs using surface attached specific molecules as triggering agents, and at the same time, suitable for positron emission tomography (PET) tracing of the prospective drug delivery process. Radiolabeling was accomplished using DOTA bifunctional chelator. DOTA was successfully adsorbed onto the surface of nanoparticles, while the 68Ga-radiolabeling method proved to be simple and effective. In the course of biodistribution studies, the 68Ga-labeled DOTA-ZrNPs showed proper radiolabeling stability in their original suspension and in blood serum. µPet/CT imaging studies confirmed a RES-biodistribution profile indicating stable nano-sized labeled particles in vivo. Results proved that the new method offers the opportunity to examine further specifically targeted and drug payload carrier variants of zirconia NP systems using PET/CT imaging.


Assuntos
Radioisótopos de Gálio/química , Nanopartículas/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Zircônio/química , Quelantes/química , Quelantes/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Radioisótopos de Gálio/metabolismo , Nanopartículas/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual/efeitos dos fármacos , Zircônio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA