RESUMO
The generation of broadly neutralizing antibodies (bnAbs) to conserved epitopes on HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The animal models commonly used for HIV do not reliably produce a potent broadly neutralizing serum antibody response, with the exception of cows. Cows have previously produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models, other engineered immunogens were shown to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n = 4) with two regimens of V2-apex focusing Env immunogens to investigate whether antibody responses could be generated to the V2-apex on Env. Group 1 was immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 was immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows, respectively, and showed moderate breadth and potency. Potent and broad responses in this study developed much later than previous cow immunizations that elicited CD4bs bnAbs responses and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target more than one broadly neutralizing epitope on the HIV surface reveals the generality of elongated structures for the recognition of highly glycosylated proteins. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.
Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Animais , Bovinos , Anticorpos Anti-HIV/imunologia , Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Epitopos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Feminino , Imunização , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Vírus da Imunodeficiência Símia/imunologiaRESUMO
ISG15, an IFN-stimulated gene, plays a crucial role in modulating immune responses during viral infections. Its upregulation is part of the host's defense mechanism against viruses, contributing to the antiviral state of cells. However, altered ISG15 expression can also lead to immune dysregulation and pathological outcomes, particularly during persistent viral infections. Understanding the balance of ISG15 in promoting antiviral immunity while avoiding immune-mediated pathology is essential for developing targeted therapeutic interventions against viral diseases. In this article, using Usp18-deficient, USP18 enzymatic-inactive and Isg15-deficient mouse models, we report that a lack of USP18 enzymatic function during persistent viral infection leads to severe immune pathology characterized by hematological disruptions described by reductions in platelets, total WBCs, and lymphocyte counts; pulmonary cytokine amplification; lung vascular leakage; and death. The lack of Usp18 in myeloid cells mimicked the pathological manifestations observed in Usp18-/- mice and required Isg15. Mechanistically, interrupting the enzymes that conjugate/deconjugate ISG15, using Uba7-/- or Usp18C61A mice, respectively, led to accumulation of ISG15 that was accompanied by inflammatory neutrophil accumulation, lung pathology, and death similar to that observed in Usp18-deficient mice. Moreover, myeloid cell depletion reversed pathological manifestations, morbidity, and mortality in Usp18C61A mice. Our results suggest that dysregulated ISG15 production and signaling during persistent lymphocytic choriomeningitis virus infection can produce lethal immune pathology and could serve as a therapeutic target during severe viral infections with pulmonary pathological manifestations.
RESUMO
Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor-binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules.
Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/química , Saccharomyces cerevisiae/metabolismo , SARS-CoV-2 , Anticorpos , EpitoposRESUMO
Vaccination strategies aimed at maturing broadly neutralizing antibodies (bnAbs) from naïve precursors are hindered by unusual features that characterize these Abs, including insertions and deletions (indels). Longitudinal studies of natural HIV infection cases shed light on the complex processes underlying bnAb development and have suggested a role for superinfection as a potential enhancer of neutralization breadth. Here we describe the development of a potent bnAb lineage that was elicited by two founder viruses to inform vaccine design. The V3-glycan targeting bnAb lineage (PC39-1) was isolated from subtype C-infected IAVI Protocol C elite neutralizer, donor PC39, and is defined by the presence of multiple independent insertions in CDRH1 that range from 1-11 amino acids in length. Memory B cell members of this lineage are predominantly atypical in phenotype yet also span the class-switched and antibody-secreting cell compartments. Development of neutralization breadth occurred concomitantly with extensive recombination between founder viruses before each virus separated into two distinct population "arms" that evolved independently to escape the PC39-1 lineage. Ab crystal structures show an extended CDRH1 that can help stabilize the CDRH3. Overall, these findings suggest that early exposure of the humoral system to multiple related Env molecules could promote the induction of bnAbs by focusing Ab responses to conserved epitopes.
Assuntos
Dermatite , Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , EpitoposRESUMO
Diversity Oriented Clicking (DOC) is a discovery method geared toward the rapid synthesis of functional libraries. It combines the best attributes of both classical and modern click chemistries. DOC strategies center upon the chemical diversification of core "SuFExable" hubs-exemplified by 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs)-enabling the modular assembly of compounds through multiple reaction pathways. We report here a range of stereoselective Michael-type addition pathways from SASF hubs including reactions with secondary amines, carboxylates, 1H-1,2,3-triazole, and halides. These high yielding conjugate addition pathways deliver unprecedented ß-substituted alkenyl sulfonyl fluorides as single isomers with minimal purification, greatly enriching the repertoire of DOC and holding true to the fundamentals of modular click chemistry. Further, we demonstrate the potential for biological function - a key objective of click chemistry - of this family of SASF-derived molecules as covalent inhibitors of human neutrophil elastase.
Assuntos
Química Click , Fluoretos , Elastase de Leucócito , Proteínas Secretadas Inibidoras de Proteinases , Ácidos Sulfínicos , Química Click/métodos , Fluoretos/síntese química , Fluoretos/química , Fluoretos/farmacologia , Humanos , Elastase de Leucócito/antagonistas & inibidores , Proteínas Secretadas Inibidoras de Proteinases/síntese química , Proteínas Secretadas Inibidoras de Proteinases/química , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Ácidos Sulfínicos/síntese química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacologiaRESUMO
Influenza hemagglutinin (HA) glycoprotein is the primary surface antigen targeted by the host immune response and a focus for development of novel vaccines, broadly neutralizing antibodies (bnAbs), and therapeutics. HA enables viral entry into host cells via receptor binding and membrane fusion and is a validated target for drug discovery. However, to date, only a very few bona fide small molecules have been reported against the HA. To identity new antiviral lead candidates against the highly conserved fusion machinery in the HA stem, we synthesized a fluorescence-polarization probe based on a recently described neutralizing cyclic peptide P7 derived from the complementarity-determining region loops of human bnAbs FI6v3 and CR9114 against the HA stem. We then designed a robust binding assay compatible with high-throughput screening to identify molecules with low micromolar to nanomolar affinity to influenza A group 1 HAs. Our simple, low-cost, and efficient in vitro assay was used to screen H1/Puerto Rico/8/1934 (H1/PR8) HA trimer against â¼72,000 compounds. The crystal structure of H1/PR8 HA in complex with our best hit compound F0045(S) confirmed that it binds to pockets in the HA stem similar to bnAbs FI6v3 and CR9114, cyclic peptide P7, and small-molecule inhibitor JNJ4796. F0045 is enantioselective against a panel of group 1 HAs and F0045(S) exhibits in vitro neutralization activity against multiple H1N1 and H5N1 strains. Our assay, compound characterization, and small-molecule candidate should further stimulate the discovery and development of new compounds with unique chemical scaffolds and enhanced influenza antiviral capabilities.
Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Polarização de Fluorescência/métodos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Influenza Humana/virologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antivirais/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Bibliotecas de Moléculas Pequenas/químicaRESUMO
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 µM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Assuntos
Fluoretos/química , Elastase de Leucócito/antagonistas & inibidores , Inibidores de Serina Proteinase/química , Compostos de Enxofre/química , Química Click , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Elastase de Leucócito/química , Elastase de Leucócito/metabolismo , Estrutura Molecular , Ligação Proteica , Dobramento de Proteína , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Ácidos Sulfínicos/síntese química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacologiaRESUMO
Optimization of small-molecule probes or drugs is a synthetically lengthy, challenging, and resource-intensive process. Lack of automation and reliance on skilled medicinal chemists is cumbersome in both academic and industrial settings. Here, we demonstrate a high-throughput hit-to-lead process based on the biocompatible sulfur(VI) fluoride exchange (SuFEx) click chemistry. A high-throughput screening hit benzyl (cyanomethyl)carbamate (Ki = 8 µM) against a bacterial cysteine protease SpeB was modified with a SuFExable iminosulfur oxydifluoride [RNâS(O)F2] motif, rapidly diversified into 460 analogs in overnight reactions, and the products were directly screened to yield drug-like inhibitors with 480-fold higher potency (Ki = 18 nM). We showed that the improved molecule is active in a bacteria-host coculture. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, we anticipate our methodology can accelerate the development of robust biological probes and drug candidates.
Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Exotoxinas/antagonistas & inibidores , Compostos de Enxofre/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Química Click , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/toxicidade , Descoberta de Drogas , Exotoxinas/química , Exotoxinas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Células Jurkat , Microssomos Hepáticos/metabolismo , Estudo de Prova de Conceito , Ligação ProteicaRESUMO
The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. Although the majority of staphylococcal complement inhibitors act on the alternative pathway to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical pathway (CP) and lectin pathway (LP). We screened a collection of recombinant, secreted staphylococcal proteins to determine whether S. aureus produces other molecules that inhibit the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 proconvertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion.
Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , C3 Convertase da Via Alternativa do Complemento/antagonistas & inibidores , Via Clássica do Complemento/imunologia , Lectina de Ligação a Manose da Via do Complemento/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Complemento C2/imunologia , Complemento C2/metabolismo , Complemento C3b/imunologia , Complemento C3b/metabolismo , Complemento C4b/imunologia , Complemento C4b/metabolismo , Citotoxicidade Imunológica , Humanos , Modelos Imunológicos , Neutrófilos/imunologia , Fagocitose/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismoRESUMO
The generation of broadly neutralizing antibodies (bnAbs) to specific HIV epitopes of the HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The current animal models we use have been unable to reliable produce a broadly neutralizing antibody response, with the exception of cows. Cows have rapidly and reliably produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models other engineered immunogens previously have been able to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n=4) with two regiments of V2-apex focusing immunogens to investigate whether antibody responses could be directed to the V2-apex on Env. Group 1 were immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 were immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows respectively. The best bnAbs had both medium breadth and potency. Potent and broad responses developed later than previous CD4bs cow bnAbs and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target multiple broadly neutralizing epitopes on the HIV surface reveals important insight into the generation of immunogens and testing in the cow animal model. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.
RESUMO
Snakebite envenoming is a major global public health concern for which improved therapies are urgently needed. The antigenic diversity present in snake venom toxins from various species presents a considerable challenge to the development of a universal antivenom. Here, we used a synthetic human antibody library to find and develop an antibody that neutralizes long-chain three-finger α-neurotoxins produced by numerous medically relevant snakes. Our antibody bound diverse toxin variants with high affinity, blocked toxin binding to the nicotinic acetylcholine receptor in vitro, and protected mice from lethal venom challenge. Structural analysis of the antibody-toxin complex revealed a binding mode that mimics the receptor-toxin interaction. The overall workflow presented is generalizable for the development of antibodies that target conserved epitopes among antigenically diverse targets, and it offers a promising framework for the creation of a monoclonal antibody-based universal antivenom to treat snakebite envenoming.
Assuntos
Antivenenos , Mordeduras de Serpentes , Humanos , Animais , Camundongos , Antivenenos/química , Mordeduras de Serpentes/tratamento farmacológico , Neurotoxinas/toxicidade , Anticorpos Amplamente Neutralizantes , Venenos de SerpentesRESUMO
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for strategies to rapidly develop neutralizing monoclonal antibodies that can function as prophylactic and therapeutic agents and to help guide vaccine design. Here, we demonstrate that engineering approaches can be used to refocus an existing antibody that neutralizes one virus but not a related virus. Through a rapid affinity maturation strategy, we engineered CR3022, a SARS-CoV-1-neutralizing antibody, to bind to the receptor binding domain of SARS-CoV-2 with >1000-fold increased affinity. The engineered CR3022 neutralized SARS-CoV-2 and provided prophylactic protection from viral challenge in a small animal model of SARS-CoV-2 infection. Deep sequencing throughout the engineering process paired with crystallographic analysis of engineered CR3022 elucidated the molecular mechanisms by which the antibody can accommodate sequence differences in the epitopes between SARS-CoV-1 and SARS-CoV-2. This workflow provides a blueprint for the rapid broadening of neutralization of an antibody from one virus to closely related but resistant viruses.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Antivirais , Testes de Neutralização , Anticorpos NeutralizantesRESUMO
The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.
RESUMO
Effector T cells comprise the cellular arm of the adaptive immune system and are essential for mounting immune responses against pathogens and cancer. To reach effector status, costimulation through CD28 is required. Here, we report that sialic acid-containing glycans on the surface of both T cells and APCs are alternative ligands of CD28 that compete with binding to its well-documented activatory ligand CD80 on the APC, resulting in attenuated costimulation. Removal of sialic acids enhances antigen-mediated activation of naïve T cells and also increases the revival of effector T cells made hypofunctional or exhausted via chronic viral infection. This occurs through a mechanism that is synergistic with antibody blockade of the inhibitory PD-1 axis. These results reveal a previously unrecognized role of sialic acid ligands in attenuation of CD28-mediated costimulation of T cells.
RESUMO
Members of the CA class of cysteine proteases have multifaceted roles in physiology and virulence for many bacteria. Streptococcal pyrogenic exotoxin B (SpeB) is secreted by Streptococcus pyogenes and implicated in the pathogenesis of the bacterium through degradation of key human immune effector proteins. Here, we developed and characterized a clickable inhibitor, 2S-alkyne, based on X-ray crystallographic analysis and structure-activity relationships. Our SpeB probe showed irreversible enzyme inhibition in biochemical assays and labeled endogenous SpeB in cultured S. pyogenes supernatants. Importantly, application of 2S-alkyne decreased S. pyogenes survival in the presence of human neutrophils and supports the role of SpeB-mediated proteolysis as a mechanism to limit complement-mediated host defense. We posit that our SpeB inhibitor will be a useful chemical tool to regulate, label, and quantitate secreted cysteine proteases with SpeB-like activity in complex biological samples and a lead candidate for new therapeutics designed to sensitize S. pyogenes to host immune clearance.
Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Cisteína Proteases/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Streptococcus pyogenes/enzimologia , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/química , Desenho de Fármacos , Conformação Proteica , Streptococcus pyogenes/patogenicidade , Relação Estrutura-Atividade , VirulênciaRESUMO
Countermeasures to prevent and treat coronavirus disease 2019 (COVID-19) are a global health priority. We enrolled a cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-recovered participants, developed neutralization assays to investigate antibody responses, adapted our high-throughput antibody generation pipeline to rapidly screen more than 1800 antibodies, and established an animal model to test protection. We isolated potent neutralizing antibodies (nAbs) to two epitopes on the receptor binding domain (RBD) and to distinct non-RBD epitopes on the spike (S) protein. As indicated by maintained weight and low lung viral titers in treated animals, the passive transfer of a nAb provides protection against disease in high-dose SARS-CoV-2 challenge in Syrian hamsters. The study suggests a role for nAbs in prophylaxis, and potentially therapy, of COVID-19. The nAbs also define protective epitopes to guide vaccine design.
Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Adulto , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , Afinidade de Anticorpos , Especificidade de Anticorpos , Betacoronavirus/fisiologia , Sítios de Ligação , COVID-19 , Linhagem Celular , Infecções por Coronavirus/terapia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Epitopos , Feminino , Humanos , Imunização Passiva , Pulmão/virologia , Masculino , Mesocricetus , Pessoa de Meia-Idade , Testes de Neutralização , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/terapia , Pneumonia Viral/virologia , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Carga Viral , Replicação Viral , Soroterapia para COVID-19RESUMO
The development of countermeasures to prevent and treat COVID-19 is a global health priority. In under 7 weeks, we enrolled a cohort of SARS-CoV-2-recovered participants, developed neutralization assays to interrogate serum and monoclonal antibody responses, adapted our high throughput antibody isolation, production and characterization pipeline to rapidly screen over 1000 antigen-specific antibodies, and established an animal model to test protection. We report multiple highly potent neutralizing antibodies (nAbs) and show that passive transfer of a nAb provides protection against high-dose SARS-CoV-2 challenge in Syrian hamsters. The study suggests a role for nAbs in prophylaxis, and potentially therapy, of COVID-19. The nAbs define protective epitopes to guide vaccine design.
RESUMO
Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.
Assuntos
Elastase de Leucócito/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Staphylococcus aureus/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Linhagem Celular , Humanos , Evasão da Resposta Imune , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Inibidores de Serina Proteinase/genética , Staphylococcus aureus/enzimologiaRESUMO
The extracellular adherence protein (Eap) plays a crucial role in pathogenesis and survival of Staphylococcus aureus by inhibiting the classical and lectin pathways of complement. We have previously shown that Eap binds with nanomolar affinity to complement C4b and disrupts the initial interaction between C4b and C2, thereby inhibiting formation of the classical and lectin pathway C3 pro-convertase. Although an underlying mechanism has been identified, the structural basis for Eap binding to C4b is poorly understood. Here, we show that Eap domains 3 and 4 each contain a low-affinity, but saturable binding site for C4b. Taking advantage of the high lysine content of Eap, we used a zero-length crosslinking approach to map the Eap binding site to both the α'- and γ-chains of C4b. We also probed the C4b/Eap interface through a chemical footprinting approach involving lysine modification, proteolytic digestion, and mass spectrometry. This identified seven lysines in Eap that undergo changes in solvent exposure upon C4b binding. We found that simultaneous mutation of these lysines to either alanine or glutamate diminished C4b binding and complement inhibition by Eap. Together, our results provide insight into Eap recognition of C4b, and suggest that the repeating domains that comprise Eap are capable of multiple ligand-binding modes.
Assuntos
Proteínas de Bactérias/química , Complemento C4b/química , Lisina/química , Proteínas de Ligação a RNA/química , Staphylococcus aureus/química , Alanina/química , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carbodi-Imidas/química , Complemento C4b/genética , Complemento C4b/metabolismo , Via Clássica do Complemento , Lectina de Ligação a Manose da Via do Complemento , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Expressão Gênica , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de AminoácidosRESUMO
The pathogenic bacterium Staphylococcus aureus has evolved to actively evade many aspects of the human innate immune system by expressing a series of secreted inhibitory proteins. Among these, the extracellular adherence protein (Eap) has been shown to inhibit the classical and lectin pathways of the complement system. By binding to complement component C4b, Eap is able to inhibit formation of the CP/LP C3 pro-convertase. Secreted full-length, mature Eap consists of four ~98 residue domains, all of which adopt a similar beta-grasp fold, and are connected through a short linker region. Through multiple biochemical approaches, it has been determined that the third and fourth domains of Eap are responsible for C4b binding. Here we report the backbone and side-chain resonance assignments of the 11.3 kDa fourth domain of Eap. The assignment data has been deposited in the BMRB database under the accession number 26726.