Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(3): 716-729.e27, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29961576

RESUMO

Single-cell RNA sequencing technologies suffer from many sources of technical noise, including under-sampling of mRNA molecules, often termed "dropout," which can severely obscure important gene-gene relationships. To address this, we developed MAGIC (Markov affinity-based graph imputation of cells), a method that shares information across similar cells, via data diffusion, to denoise the cell count matrix and fill in missing transcripts. We validate MAGIC on several biological systems and find it effective at recovering gene-gene relationships and additional structures. Applied to the epithilial to mesenchymal transition, MAGIC reveals a phenotypic continuum, with the majority of cells residing in intermediate states that display stem-like signatures, and infers known and previously uncharacterized regulatory interactions, demonstrating that our approach can successfully uncover regulatory relations without perturbations.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Linhagem Celular , Epistasia Genética/genética , Redes Reguladoras de Genes/genética , Humanos , Cadeias de Markov , MicroRNAs/genética , RNA Mensageiro/genética , Software
2.
Nature ; 591(7848): 99-104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33627875

RESUMO

Neuropil is a fundamental form of tissue organization within the brain1, in which densely packed neurons synaptically interconnect into precise circuit architecture2,3. However, the structural and developmental principles that govern this nanoscale precision remain largely unknown4,5. Here we use an iterative data coarse-graining algorithm termed 'diffusion condensation'6 to identify nested circuit structures within the Caenorhabditis elegans neuropil, which is known as the nerve ring. We show that the nerve ring neuropil is largely organized into four strata that are composed of related behavioural circuits. The stratified architecture of the neuropil is a geometrical representation of the functional segregation of sensory information and motor outputs, with specific sensory organs and muscle quadrants mapping onto particular neuropil strata. We identify groups of neurons with unique morphologies that integrate information across strata and that create neural structures that cage the strata within the nerve ring. We use high resolution light-sheet microscopy7,8 coupled with lineage-tracing and cell-tracking algorithms9,10 to resolve the developmental sequence and reveal principles of cell position, migration and outgrowth that guide stratified neuropil organization. Our results uncover conserved structural design principles that underlie the architecture and function of the nerve ring neuropil, and reveal a temporal progression of outgrowth-based on pioneer neurons-that guides the hierarchical development of the layered neuropil. Our findings provide a systematic blueprint for using structural and developmental approaches to understand neuropil organization within the brain.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Neurópilo/química , Neurópilo/metabolismo , Algoritmos , Animais , Encéfalo/citologia , Encéfalo/embriologia , Caenorhabditis elegans/química , Caenorhabditis elegans/citologia , Movimento Celular , Difusão , Interneurônios/metabolismo , Neurônios Motores/metabolismo , Neuritos/metabolismo , Neurópilo/citologia , Células Receptoras Sensoriais/metabolismo
3.
Radiology ; 309(1): e230659, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37787678

RESUMO

Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose To evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue.


Assuntos
Aprendizado Profundo , Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Estudos Retrospectivos , Técnicas de Imagem por Elasticidade/métodos , Curva ROC , Biópsia/métodos
4.
Nat Methods ; 17(3): 302-310, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932777

RESUMO

While several tools have been developed to map axes of variation among individual cells, no analogous approaches exist for identifying axes of variation among multicellular biospecimens profiled at single-cell resolution. For this purpose, we developed 'phenotypic earth mover's distance' (PhEMD). PhEMD is a general method for embedding a 'manifold of manifolds', in which each datapoint in the higher-level manifold (of biospecimens) represents a collection of points that span a lower-level manifold (of cells). We apply PhEMD to a newly generated drug-screen dataset and demonstrate that PhEMD uncovers axes of cell subpopulational variation among a large set of perturbation conditions. Moreover, we show that PhEMD can be used to infer the phenotypes of biospecimens not directly profiled. Applied to clinical datasets, PhEMD generates a map of the patient-state space that highlights sources of patient-to-patient variation. PhEMD is scalable, compatible with leading batch-effect correction techniques and generalizable to multiple experimental designs.


Assuntos
Neoplasias da Mama/metabolismo , Citofotometria/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Mamárias Animais/metabolismo , Análise de Célula Única/métodos , Algoritmos , Animais , Antineoplásicos/farmacologia , Biópsia , Análise por Conglomerados , Inibidores Enzimáticos/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Camundongos , Metástase Neoplásica , Reconhecimento Automatizado de Padrão/métodos , Fenótipo , Proteínas Recombinantes/química , Software , Fator de Crescimento Transformador beta/metabolismo
5.
Nat Methods ; 16(11): 1139-1145, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591579

RESUMO

It is currently challenging to analyze single-cell data consisting of many cells and samples, and to address variations arising from batch effects and different sample preparations. For this purpose, we present SAUCIE, a deep neural network that combines parallelization and scalability offered by neural networks, with the deep representation of data that can be learned by them to perform many single-cell data analysis tasks. Our regularizations (penalties) render features learned in hidden layers of the neural network interpretable. On large, multi-patient datasets, SAUCIE's various hidden layers contain denoised and batch-corrected data, a low-dimensional visualization and unsupervised clustering, as well as other information that can be used to explore the data. We analyze a 180-sample dataset consisting of 11 million T cells from dengue patients in India, measured with mass cytometry. SAUCIE can batch correct and identify cluster-based signatures of acute dengue infection and create a patient manifold, stratifying immune response to dengue.


Assuntos
Redes Neurais de Computação , Análise de Célula Única , Análise por Conglomerados , Dengue/imunologia , Humanos , Linfócitos T/imunologia
6.
Sci Rep ; 14(1): 13253, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858500

RESUMO

We aimed to implement four data partitioning strategies evaluated with four federated learning (FL) algorithms and investigate the impact of data distribution on FL model performance in detecting steatosis using B-mode US images. A private dataset (153 patients; 1530 images) and a public dataset (55 patient; 550 images) were included in this retrospective study. The datasets contained patients with metabolic dysfunction-associated fatty liver disease (MAFLD) with biopsy-proven steatosis grades and control individuals without steatosis. We employed four data partitioning strategies to simulate FL scenarios and we assessed four FL algorithms. We investigated the impact of class imbalance and the mismatch between the global and local data distributions on the learning outcome. Classification performance was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. AUCs were 0.93 (95% CI 0.92, 0.94) for source-based partitioning scenario with FedAvg, 0.90 (95% CI 0.89, 0.91) for a centralized model, and 0.83 (95% CI 0.81, 0.85) for a model trained in a single-center scenario. When data was perfectly balanced on the global level and each site had an identical data distribution, the model yielded an AUC of 0.90 (95% CI 0.88, 0.92). When each site contained data exclusively from one single class, irrespective of the global data distribution, the AUC fell in the range of 0.34-0.70. FL applied to B-mode US images provide performance comparable to a centralized model and higher than single-center scenario. Global data imbalance and local data heterogeneity influenced the learning outcome.


Assuntos
Algoritmos , Fígado Gorduroso , Ultrassonografia , Humanos , Ultrassonografia/métodos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Fígado Gorduroso/diagnóstico por imagem , Fígado Gorduroso/patologia , Adulto , Curva ROC , Aprendizado de Máquina , Área Sob a Curva , Idoso
7.
Commun Biol ; 7(1): 591, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760483

RESUMO

Late onset Alzheimer's disease (AD) is a progressive neurodegenerative disease, with brain changes beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA sequencing (snRNA-seq) efforts have highlighted that glial cells, particularly microglia, claim a central role in AD pathophysiology. Here, we tailor pattern-learning algorithms to explore distinct gene programs by integrating the entire transcriptome, yielding distributed AD-predictive modules within the brain's major cell-types. We show that these learned modules are biologically meaningful through the identification of new and relevant enriched signaling cascades. The predictive nature of our modules, especially in microglia, allows us to infer each subject's progression along a disease pseudo-trajectory, confirmed by post-mortem pathological brain tissue markers. Additionally, we quantify the interplay between pairs of cell-type modules in the AD brain, and localized known AD risk genes to enriched module gene programs. Our collective findings advocate for a transition from cell-type-specificity to gene modules specificity to unlock the potential of unique gene programs, recasting the roles of recently reported genome-wide AD risk loci.


Assuntos
Doença de Alzheimer , Progressão da Doença , Transcriptoma , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Microglia/metabolismo , Microglia/patologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
8.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293135

RESUMO

Dimensionality reduction-based data visualization is pivotal in comprehending complex biological data. The most common methods, such as PHATE, t-SNE, and UMAP, are unsupervised and therefore reflect the dominant structure in the data, which may be independent of expert-provided labels. Here we introduce a supervised data visualization method called RF-PHATE, which integrates expert knowledge for further exploration of the data. RF-PHATE leverages random forests to capture intricate featurelabel relationships. Extracting information from the forest, RF-PHATE generates low-dimensional visualizations that highlight relevant data relationships while disregarding extraneous features. This approach scales to large datasets and applies to classification and regression. We illustrate RF-PHATE's prowess through three case studies. In a multiple sclerosis study using longitudinal clinical and imaging data, RF-PHATE unveils a sub-group of patients with non-benign relapsingremitting Multiple Sclerosis, demonstrating its aptitude for time-series data. In the context of Raman spectral data, RF-PHATE effectively showcases the impact of antioxidants on diesel exhaust-exposed lung cells, highlighting its proficiency in noisy environments. Furthermore, RF-PHATE aligns established geometric structures with COVID-19 patient outcomes, enriching interpretability in a hierarchical manner. RF-PHATE bridges expert insights and visualizations, promising knowledge generation. Its adaptability, scalability, and noise tolerance underscore its potential for widespread adoption.

9.
Nat Commun ; 15(1): 4177, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755196

RESUMO

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


Assuntos
Anticorpos Antivirais , COVID-19 , Interferons , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Transdução de Sinais/imunologia , Interferons/metabolismo , Interferons/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Linfócitos T CD4-Positivos/imunologia , Idoso , Adulto , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
10.
IEEE Trans Pattern Anal Mach Intell ; 45(6): 7381-7394, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36374884

RESUMO

A fundamental task in data exploration is to extract low dimensional representations that capture intrinsic geometry in data, especially for faithfully visualizing data in two or three dimensions. Common approaches use kernel methods for manifold learning. However, these methods typically only provide an embedding of the input data and cannot extend naturally to new data points. Autoencoders have also become popular for representation learning. While they naturally compute feature extractors that are extendable to new data and invertible (i.e., reconstructing original features from latent representation), they often fail at representing the intrinsic data geometry compared to kernel-based manifold learning. We present a new method for integrating both approaches by incorporating a geometric regularization term in the bottleneck of the autoencoder. This regularization encourages the learned latent representation to follow the intrinsic data geometry, similar to manifold learning algorithms, while still enabling faithful extension to new data and preserving invertibility. We compare our approach to autoencoder models for manifold learning to provide qualitative and quantitative evidence of our advantages in preserving intrinsic structure, out of sample extension, and reconstruction. Our method is easily implemented for big-data applications, whereas other methods are limited in this regard.

11.
ArXiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37396618

RESUMO

Diffusion-based manifold learning methods have proven useful in representation learning and dimensionality reduction of modern high dimensional, high throughput, noisy datasets. Such datasets are especially present in fields like biology and physics. While it is thought that these methods preserve underlying manifold structure of data by learning a proxy for geodesic distances, no specific theoretical links have been established. Here, we establish such a link via results in Riemannian geometry explicitly connecting heat diffusion to manifold distances. In this process, we also formulate a more general heat kernel based manifold embedding method that we call heat geodesic embeddings. This novel perspective makes clearer the choices available in manifold learning and denoising. Results show that our method outperforms existing state of the art in preserving ground truth manifold distances, and preserving cluster structure in toy datasets. We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure, where our method enables interpolation of withheld timepoints of data. Finally, we show that parameters of our more general method can be configured to give results similar to PHATE (a state-of-the-art diffusion based manifold learning method) as well as SNE (an attraction/repulsion neighborhood based method that forms the basis of t-SNE).

12.
ArXiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808090

RESUMO

Efficient computation of optimal transport distance between distributions is of growing importance in data science. Sinkhorn-based methods are currently the state-of-the-art for such computations, but require On2 computations. In addition, Sinkhorn-based methods commonly use an Euclidean ground distance between datapoints. However, with the prevalence of manifold structured scientific data, it is often desirable to consider geodesic ground distance. Here, we tackle both issues by proposing Geodesic Sinkhorn-based on diffusing a heat kernel on a manifold graph. Notably, Geodesic Sinkhorn requires only O(nlog⁡n) computation, as we approximate the heat kernel with Chebyshev polynomials based on the sparse graph Laplacian. We apply our method to the computation of barycenters of several distributions of high dimensional single cell data from patient samples undergoing chemotherapy. In particular, we define the barycentric distance as the distance between two such barycenters. Using this definition, we identify an optimal transport distance and path associated with the effect of treatment on cellular data.

13.
Nat Comput Sci ; 3(3): 240-253, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37693659

RESUMO

The complexity of the human brain gives the illusion that brain activity is intrinsically high-dimensional. Nonlinear dimensionality-reduction methods such as uniform manifold approximation and t-distributed stochastic neighbor embedding have been used for high-throughput biomedical data. However, they have not been used extensively for brain activity data such as those from functional magnetic resonance imaging (fMRI), primarily due to their inability to maintain dynamic structure. Here we introduce a nonlinear manifold learning method for time-series data-including those from fMRI-called temporal potential of heat-diffusion for affinity-based transition embedding (T-PHATE). In addition to recovering a low-dimensional intrinsic manifold geometry from time-series data, T-PHATE exploits the data's autocorrelative structure to faithfully denoise and unveil dynamic trajectories. We empirically validate T-PHATE on three fMRI datasets, showing that it greatly improves data visualization, classification, and segmentation of the data relative to several other state-of-the-art dimensionality-reduction benchmarks. These improvements suggest many potential applications of T-PHATE to other high-dimensional datasets of temporally diffuse processes.

14.
Nat Commun ; 14(1): 2589, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147305

RESUMO

Due to commonalities in pathophysiology, age-related macular degeneration (AMD) represents a uniquely accessible model to investigate therapies for neurodegenerative diseases, leading us to examine whether pathways of disease progression are shared across neurodegenerative conditions. Here we use single-nucleus RNA sequencing to profile lesions from 11 postmortem human retinas with age-related macular degeneration and 6 control retinas with no history of retinal disease. We create a machine-learning pipeline based on recent advances in data geometry and topology and identify activated glial populations enriched in the early phase of disease. Examining single-cell data from Alzheimer's disease and progressive multiple sclerosis with our pipeline, we find a similar glial activation profile enriched in the early phase of these neurodegenerative diseases. In late-stage age-related macular degeneration, we identify a microglia-to-astrocyte signaling axis mediated by interleukin-1ß which drives angiogenesis characteristic of disease pathogenesis. We validated this mechanism using in vitro and in vivo assays in mouse, identifying a possible new therapeutic target for AMD and possibly other neurodegenerative conditions. Thus, due to shared glial states, the retina provides a potential system for investigating therapeutic approaches in neurodegenerative diseases.


Assuntos
Degeneração Macular , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Degeneração Macular/metabolismo , Retina/metabolismo , Neuroglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Análise de Célula Única
15.
Adv Neural Inf Process Syst ; 35: 29705-29718, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37397786

RESUMO

We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow) that learns stochastic, continuous population dynamics from static snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic models, manifold learning, and optimal transport by training neural ordinary differential equations (Neural ODE) to interpolate between static population snapshots as penalized by optimal transport with manifold ground distance. Further, we ensure that the flow follows the geometry by operating in the latent space of an autoencoder that we call a geodesic autoencoder (GAE). In GAE the latent space distance between points is regularized to match a novel multiscale geodesic distance on the data manifold that we define. We show that this method is superior to normalizing flows, Schrödinger bridges and other generative models that are designed to flow from noise to data in terms of interpolating between populations. Theoretically, we link these trajectories with dynamic optimal transport. We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36628172

RESUMO

In modern relational machine learning it is common to encounter large graphs that arise via interactions or similarities between observations in many domains. Further, in many cases the target entities for analysis are actually signals on such graphs. We propose to compare and organize such datasets of graph signals by using an earth mover's distance (EMD) with a geodesic cost over the underlying graph. Typically, EMD is computed by optimizing over the cost of transporting one probability distribution to another over an underlying metric space. However, this is inefficient when computing the EMD between many signals. Here, we propose an unbalanced graph EMD that efficiently embeds the unbalanced EMD on an underlying graph into an L 1 space, whose metric we call unbalanced diffusion earth mover's distance (UDEMD). Next, we show how this gives distances between graph signals that are robust to noise. Finally, we apply this to organizing patients based on clinical notes, embedding cells modeled as signals on a gene graph, and organizing genes modeled as signals over a large cell graph. In each case, we show that UDEMD-based embeddings find accurate distances that are highly efficient compared to other methods.

17.
Front Med (Lausanne) ; 9: 826746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265640

RESUMO

The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has been sequenced at an unprecedented scale leading to a tremendous amount of viral genome sequencing data. To assist in tracing infection pathways and design preventive strategies, a deep understanding of the viral genetic diversity landscape is needed. We present here a set of genomic surveillance tools from population genetics which can be used to better understand the evolution of this virus in humans. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic. We analyzed 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets. This approach enables real-time lineage identification, a clear description of the relationship between variants of concern, and efficient detection of recurrent mutations. Furthermore, time series change of Tajima's D by haplotype provides a powerful metric of lineage expansion. Finally, principal component analysis (PCA) highlights key steps in variant emergence and facilitates the visualization of genomic variation in the context of SARS-CoV-2 diversity. The computational framework presented here is simple to implement and insightful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of populations of humans and other organisms.

18.
Nat Biotechnol ; 40(5): 681-691, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35228707

RESUMO

As the biomedical community produces datasets that are increasingly complex and high dimensional, there is a need for more sophisticated computational tools to extract biological insights. We present Multiscale PHATE, a method that sweeps through all levels of data granularity to learn abstracted biological features directly predictive of disease outcome. Built on a coarse-graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse resolutions for high-level summarizations of data and at fine resolutions for detailed representations of subsets. We apply Multiscale PHATE to a coronavirus disease 2019 (COVID-19) dataset with 54 million cells from 168 hospitalized patients and find that patients who die show CD16hiCD66blo neutrophil and IFN-γ+ granzyme B+ Th17 cell responses. We also show that population groupings from Multiscale PHATE directly fed into a classifier predict disease outcome more accurately than naive featurizations of the data. Multiscale PHATE is broadly generalizable to different data types, including flow cytometry, single-cell RNA sequencing (scRNA-seq), single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), and clinical variables.


Assuntos
COVID-19 , Análise de Célula Única , Cromatina , Humanos , Análise de Célula Única/métodos , Transposases , Sequenciamento do Exoma
19.
Artigo em Inglês | MEDLINE | ID: mdl-34849105

RESUMO

Geometric scattering has recently gained recognition in graph representation learning, and recent work has shown that integrating scattering features in graph convolution networks (GCNs) can alleviate the typical oversmoothing of features in node representation learning. However, scattering often relies on handcrafted design, requiring careful selection of frequency bands via a cascade of wavelet transforms, as well as an effective weight sharing scheme to combine low- and band-pass information. Here, we introduce a new attention-based architecture to produce adaptive task-driven node representations by implicitly learning node-wise weights for combining multiple scattering and GCN channels in the network. We show the resulting geometric scattering attention network (GSAN) outperforms previous networks in semi-supervised node classification, while also enabling a spectral study of extracted information by examining node-wise attention weights.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35340810

RESUMO

We propose a method called integrated diffusion for combining multimodal data, gathered via different sensors on the same system, to create a integrated data diffusion operator. As real world data suffers from both local and global noise, we introduce mechanisms to optimally calculate a diffusion operator that reflects the combined information in data by maintaining low frequency eigenvectors of each modality both globally and locally. We show the utility of this integrated operator in denoising and visualizing multimodal toy data as well as multi-omic data generated from blood cells, measuring both gene expression and chromatin accessibility. Our approach better visualizes the geometry of the integrated data and captures known cross-modality associations. More generally, integrated diffusion is broadly applicable to multimodal datasets generated by noisy sensors collected in a variety of fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA