RESUMO
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Assuntos
Cianobactérias , Microalgas , Carotenoides/metabolismo , Cianobactérias/metabolismoRESUMO
BACKGROUND: As a chronic antigenic stressor human Cytomegalovirus (CMV) contributes substantially to age-related alterations of the immune system. Even though monocytes have the greatest propensity for CMV-infection and seem to be an important host for the virus during latency, fibroblasts are also discussed to be target cells of CMV in vivo. However, little is known so far about general immunoregulatory properties of CMV in fibroblasts. We therefore investigated the immunoregulatory effects of CMV-infection in human lung fibroblasts and the impact on replicative senescence. FINDINGS: We observed that CMV-infection led to the induction of several immunoregulatory host cell genes associated with the innate and adaptive immune system. These were genes of different function such as genes regulating apoptosis, cytokines/chemokines and genes that are responsible for the detection of pathogens. Some of the genes upregulated following CMV-infection are also upregulated during cellular senescence, indicating that CMV causes an immunological phenotype in fibroblasts, which is partially reminiscent of replicative senescent cells. CONCLUSION: In summary our results demonstrate that CMV not only affects the T cell pool but also induces inflammatory processes in human fibroblasts.
RESUMO
The immune system is affected by the aging process and undergoes significant age-related changes, termed immunosenescence. Different T cell subsets are affected by this process. Alterations within the bone marrow and thymus lead to a shift in the composition of the T cell repertoire from naïve to antigen-experienced T cells, thereby compromising the diversity of the T cell pool. Additional infection with latent pathogens such as cytomegalovirus aggravates this process. In this review, we focus on the major age-related changes that occur in the naïve and the antigen-experienced T cell population. We discuss the mechanisms responsible for the generation and maintenance of these subsets and how age-related changes can be delayed or prevented by clinical interventions.
Assuntos
Envelhecimento/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Antígenos/imunologia , Humanos , Memória Imunológica , ImunomodulaçãoRESUMO
Agriculture has radically changed the global nitrogen (N) cycle and is heavily dependent on synthetic N-fertiliser. However, the N-use efficiency of synthetic fertilisers is often only 50% with N-losses from crop systems polluting the biosphere, hydrosphere and atmosphere. To address the large carbon and energy footprint of N-fertiliser synthesis and curb N-pollution, new technologies are required to deliver enhanced energy efficiency, decarbonisation and a circular nutrient economy. Algae fertilisers (AF) are an alternative to synthetic N-fertiliser (SF). Here microalgae were used as biofertiliser for spinach production. AF production was evaluated using life-cycle analyses. Over 4â¯weeks, AF released 63.5% of N as bioavailable ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate; SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF's slower and linear N-release; SF exhibited 5-times higher N-leaching than AF. Optimised AF:SF blends yielded greater synchrony between N-release and crop-uptake, boosting crop yields and minimising N-loss. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity of the growth substrate. An integrated techno-economic and life-cycle-analysis of scaled-up microalgae systems (+/- wastewater) normalised to the application dose showed that replacing the most effective SF-dose with AF lowered the annual carbon footprint of fertiliser production from 3.644â¯kg CO2 m-2 (C-producing) to -6.039â¯kg CO2 m-2 (C-assimilation). N-loss from growth substrate was lowered by 54%. Embodied energy for AF:SF blends could be reduced by 29% when cultivating microalgae on wastewater. Conclusions: (i) microalgae offer a sustainable alternative to synthetic N-fertiliser for spinach production and potentially other crop systems, (ii) microalgae biofertilisers support the circular-nutrient-economy and several UN-Sustainable-Development-Goals.
Assuntos
Fertilizantes , Microalgas , Biomassa , Fertilizantes/análise , Nitrogênio , Nutrientes , Águas ResiduáriasRESUMO
Microalgae biotechnologies are rapidly developing into new commercial settings. Several high value products already exist on the market, and systems development is focused on cost reduction to open up future economic opportunities for food, fuel and freshwater production. Light is a key environmental driver for photosynthesis and optimising light capture is therefore critical for low cost, high efficiency systems. Here a novel high-throughput screen that simulates fluctuating light regimes in mass cultures is presented. The data was used to model photosynthetic efficiency (PEµ, mol photon-1 m2) and chlorophyll fluorescence of two green algae, Chlamydomonas reinhardtii and Chlorella sp. Response surface methodology defined the effect of three key variables: density factor (Df, 'culture density'), cycle time (tc, 'mixing rate'), and maximum incident irradiance (Imax). Both species exhibited a large rise in PEµ with decreasing Imax and a minimal effect of tc (between 3-20 s). However, the optimal Df of 0.4 for Chlamydomonas and 0.8 for Chlorella suggested strong preferences for dilute and dense cultures respectively. Chlorella had a two-fold higher optimised PEµ than Chlamydomonas, despite its higher light sensitivity. These results demonstrate species-specific light preferences within the green algae clade. Our high-throughput screen enables rapid strain selection and process optimisation.
Assuntos
Biotecnologia/métodos , Luz , Microalgas/efeitos da radiação , Células Cultivadas , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/efeitos da radiação , Chlorella/citologia , Chlorella/efeitos da radiação , Microalgas/citologia , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismoRESUMO
BACKGROUND: Microalgae provide an excellent platform for the production of high-value-products and are increasingly being recognised as a promising production system for biomass, animal feeds and renewable fuels. RESULTS: Here, we describe an automated screen, to enable high-throughput optimisation of 12 nutrients for microalgae production. Its miniaturised 1,728 multiwell format allows multiple microalgae strains to be simultaneously screened using a two-step process. Step 1 optimises the primary elements nitrogen and phosphorous. Step 2 uses Box-Behnken analysis to define the highest growth rates within the large multidimensional space tested (Ca, Mg, Fe, Mn, Zn, Cu, B, Se, V, Si) at three levels (-1, 0, 1). The highest specific growth rates and maximum OD750 values provide a measure for continuous and batch culture. CONCLUSION: The screen identified the main nutrient effects on growth, pairwise nutrient interactions (for example, Ca-Mg) and the best production conditions of the sampled statistical space providing the basis for a targeted full factorial screen to assist with optimisation of algae production.
RESUMO
Single cell green algae (microalgae) are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA) is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels). Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3) in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%), LHCBM2 (81.2% ±0.037%) and LHCBM3 (41.4% ±0.05%) compared to 100% control levels, and improved light to H2 (180%) and biomass (165%) conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of â¼100 µE m(-2) s(-1)) and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1) reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses) near the photobioreactor surface; 2) improved light distribution in the reactor; 3) reduced photoinhibition; 4) early onset of HYDA expression and 5) reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems.
Assuntos
Chlamydomonas reinhardtii/metabolismo , Hidrogênio/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Chlamydomonas reinhardtii/genética , Complexos de Proteínas Captadores de Luz/genética , Fotossíntese/genética , Interferência de RNARESUMO
The immune system undergoes profound age-related changes, including a gradual increase in the production and circulation of proinflammatory cytokines. Despite the known capacity of fibroblasts to produce cytokines, little is known so far about the inflammatory response of fibroblasts to cellular stress such as viral and/or bacterial infection in the context of aging. Therefore the aim of this study was to analyze the levels of IL6 and IL8 secretion in supernatants of human skin fibroblasts from young and elderly persons. Cytokine and chemokine secretion was analyzed before and after in vitro infection of the cells with Cytomegalovirus (CMV) and/or stimulation with Lipopolysaccharide (LPS). The exposure of fibroblasts to these agents caused inflammatory changes, reflected by the secretion of both the cytokine IL6 and the chemokine IL8 by fibroblasts from young as well as elderly persons. The cytokine/chemokine production induced by either agent alone could be further increased by co-stimulation of the cells with both stimuli. The level of protein secretion was dependent on the chronological age of the fibroblasts. Stimulated human skin fibroblasts from elderly donors produced higher amounts of IL6 as well as IL8 than fibroblasts from young donors. These differences were more pronounced for IL6 than for IL8. The inflammatory response of fibroblasts to stimulation differed among donors and did not correspond to the responsiveness of whole blood derived from the same person. In summary lifelong CMV-infection may act as an in vivo trigger for inflammatory changes by increasing the inflammatory response to bacterial products such as LPS. It may thus contribute to age-related inflammatory processes, referred to as 'inflamm-aging'.
Assuntos
Envelhecimento/fisiologia , Fibroblastos/metabolismo , Inflamação/fisiopatologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Adulto , Idoso de 80 Anos ou mais , Western Blotting , Células Cultivadas , Infecções por Citomegalovirus/fisiopatologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Adulto JovemRESUMO
BACKGROUND: Biogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient. RESULTS: The combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes. CONCLUSIONS: Beneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world.