Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 288(15): 10661-71, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23449979

RESUMO

Ufm1 (ubiquitin-fold modifier 1) is the most recently identified member of the ubiquitin-like protein family. We characterized the Ufm1 cascade of the model organism Caenorhabditis elegans in terms of function and analyzed interactions of the involved proteins in vitro and in vivo. Furthermore, we investigated the phenotypes of the deletion mutants uba5(ok3364) (activating enzyme of Ufm1) and ufc1(tm4888) (conjugating enzyme of Ufm1). The viable deletion mutants showed a decrease in reproduction, development, life span, and a reduced survival under heavy metal stress. However, an increased survival rate under pathogenic, oxidative, heat, and endoplasmic reticulum stress was observed. We propose that the Ufm1 cascade negatively regulates the IRE1-mediated unfolded protein response.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Deleção de Genes , Resposta ao Choque Térmico/fisiologia , Longevidade/fisiologia , Estresse Oxidativo/fisiologia , Reprodução/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
2.
J Biol Chem ; 284(51): 35818-26, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19828452

RESUMO

Parasitic nematodes cause serious diseases in humans, animals, and plants. They have limited lipid metabolism and are reliant on lipid-binding proteins to acquire these metabolites from their hosts. Several structurally novel families of lipid-binding proteins in nematodes have been described, including the fatty acid- and retinoid-binding protein family (FAR). In Caenorhabditis elegans, used as a model for studying parasitic nematodes, eight C. elegans FAR proteins have been described. The crystal structure of C. elegans FAR-7 is the first structure of a FAR protein, and it exhibits a novel fold. It differs radically from the mammalian fatty acid-binding proteins and has two ligand binding pockets joined by a surface groove. The first can accommodate the aliphatic chain of fatty acids, whereas the second can accommodate the bulkier retinoids. In addition to demonstrating lipid binding by fluorescence spectroscopy, we present evidence that retinol binding is positively regulated by casein kinase II phosphorylation at a conserved site near the bottom of the second pocket. far-7::GFP (green fluorescent protein) expression shows that it is localized in the head hypodermal syncytia and the excretory cell but that this localization changes under starvation conditions. In conclusion, our study provides the basic structural and functional information for investigation of inhibitors of lipid binding by FAR proteins.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Proteínas de Ligação a Ácido Graxo/química , Modelos Moleculares , Dobramento de Proteína , Proteínas de Ligação ao Retinol/química , Animais , Sítios de Ligação/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/metabolismo
3.
Matrix Biol ; 63: 91-105, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28192200

RESUMO

Interactions of cells with supramolecular aggregates of the extracellular matrix (ECM) are mediated, in part, by cell surface receptors of the integrin family. These are important molecular components of cell surface-suprastructures regulating cellular activities in general. A subfamily of ß1-integrins with von Willebrand-factor A-like domains (I-domains) in their α-chains can bind to collagen molecules and, therefore, are considered as important cellular mechano-receptors. Here we show that chondrocytes strongly bind to cartilage collagens in the form of individual triple helical molecules but very weakly to fibrils formed by the same molecules. We also find that chondrocyte integrins α1ß1-, α2ß1- and α10ß1-integrins and their I-domains have the same characteristics. Nevertheless we find integrin binding to mechanically generated cartilage fibril fragments, which also comprise peripheral non-collagenous material. We conclude that cell adhesion results from binding of integrin-containing adhesion suprastructures to the non-collagenous fibril periphery but not to the collagenous fibril cores. The biological importance of the well-investigated recognition of collagen molecules by integrins is unknown. Possible scenarios may include fibrillogenesis, fibril degradation and/or phagocytosis, recruitment of cells to remodeling sites, or molecular signaling across cytoplasmic membranes. In these circumstances, collagen molecules may lack a fibrillar organization. However, other processes requiring robust biomechanical functions, such as fibril organization in tissues, cell division, adhesion, or migration, do not involve direct integrin-collagen interactions.


Assuntos
Condrócitos/fisiologia , Colágenos Fibrilares/química , Cadeias alfa de Integrinas/química , Integrina alfa1beta1/química , Integrina alfa2beta1/química , Animais , Cartilagem Articular/citologia , Bovinos , Adesão Celular , Células Cultivadas , Embrião de Galinha , Receptores com Domínio Discoidina/fisiologia , Colágenos Fibrilares/fisiologia , Humanos , Proteínas Imobilizadas/química , Cadeias alfa de Integrinas/fisiologia , Integrina alfa1beta1/fisiologia , Integrina alfa2beta1/fisiologia , Ligação Proteica
4.
PLoS One ; 8(4): e60731, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593298

RESUMO

Glutathione (GSH) and GSH-dependent enzymes play a key role in cellular detoxification processes that enable organism to cope with various internal and environmental stressors. However, it is often not clear, which components of the complex GSH-metabolism are required for tolerance towards a certain stressor. To address this question, a small scale RNAi-screen was carried out in Caenorhabditis elegans where GSH-related genes were systematically knocked down and worms were subsequently analysed for their survival rate under sub-lethal concentrations of arsenite and the redox cycler juglone. While the knockdown of γ-glutamylcysteine synthetase led to a diminished survival rate under arsenite stress conditions, GSR-1 (glutathione reductase) was shown to be essential for survival under juglone stress conditions. gsr-1 is the sole GSR encoding gene found in C. elegans. Knockdown of GSR-1 hardly affected total glutathione levels nor reduced glutathione/glutathione disulphide (GSH/GSSG) ratio under normal laboratory conditions. Nevertheless, when GSSG recycling was impaired by gsr-1(RNAi), GSH synthesis was induced, but not vice versa. Moreover, the impact of GSSG recycling was potentiated under oxidative stress conditions, explaining the enormous effect gsr-1(RNAi) knockdown had on juglone tolerance. Accordingly, overexpression of GSR-1 was capable of increasing stress tolerance. Furthermore, expression levels of SKN-1-regulated GSR-1 also affected life span of C. elegans, emphasising the crucial role the GSH redox state plays in both processes.


Assuntos
Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Glutationa Redutase/metabolismo , Longevidade , Estresse Oxidativo , Animais , Arsenitos/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Glutationa Redutase/deficiência , Glutationa Redutase/genética , Longevidade/efeitos dos fármacos , Naftoquinonas/toxicidade , Oxidantes/toxicidade , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Interferência de RNA , Estresse Fisiológico/efeitos dos fármacos
5.
FEBS J ; 277(19): 4100-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20840592

RESUMO

Pyrimidines are important metabolites in all cells. Levels of cellular pyrimidines are controlled by multiple mechanisms, with one of these comprising the reductive degradation pathway. In the model invertebrate Caenorhabditis elegans, two of the three enzymes of reductive pyrimidine degradation have previously been characterized. The enzyme catalysing the final step of pyrimidine breakdown, 3-ureidopropionase (ß-alanine synthase), had only been identified based on homology. We therefore cloned and functionally expressed the 3-ureidopropionase of C. elegans as hexahistidine fusion protein. The purified recombinant enzyme readily converted the two pyrimidine degradation products: 3-ureidopropionate and 2-methyl-3-ureidopropionate. The enzyme showed a broad pH optimum between pH 7.0 and 8.0. Activity was highest at approximately 40 °C, although the half-life of activity was only 65 s at that temperature. The enzyme showed clear Michaelis-Menten kinetics, with a K(m) of 147 ± 26 µM and a V(max) of 1.1 ± 0.1 U·mg protein(-1). The quaternary structure of the recombinant enzyme was shown to correspond to a dodecamer by 'blue native' gel electrophoresis and gel filtration. The organ specific and subcellular localization of the enzyme was determined using a translational fusion to green fluorescent protein and high expression was observed in striated muscle cells. With the characterization of the 3-ureidopropionase, the reductive pyrimidine degradation pathway in C. elegans has been functionally characterized.


Assuntos
Amidoidrolases/metabolismo , Caenorhabditis elegans/enzimologia , Amidoidrolases/química , Amidoidrolases/genética , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Primers do DNA , Drosophila melanogaster/enzimologia , Regulação Enzimológica da Expressão Gênica , Humanos , Cinética , Filogenia , Biossíntese de Proteínas , Interferência de RNA , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato , Zea mays/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA