Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Craniofac Surg ; 35(1): 241-242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37643059

RESUMO

Mid-facial asymmetry caused by bone defect or deformation resulted from craniofacial fracture was a common secondary complication needed to repair. Patient-specific implant (PSI) designed with the unaffected side as a template is a good choice to repair this kind of facial asymmetry. However, in Asians, the broad and prominent zygomatic bone in unaffected side is not an optimal template, because the oval facial shape was considered as a more attractive appearance in Asian esthetic concept. To repair the mid-facial asymmetry and to improve the facial contour, the authors combined PSI implantation with malar reduction in one-stage surgery. The authors referred the facial proportion index (the optimal ratio of mid and lower face was 1.27) as a basis for preoperative precise design to determine the ideal facial shape of unaffected side, and used mirror image overlay technique with the ideal shape of unaffected side as a template to design the PSI. With this surgical strategy, patients not only can repair facial asymmetry but also can get a more attractive appearance.


Assuntos
Assimetria Facial , Fraturas Zigomáticas , Humanos , Assimetria Facial/etiologia , Assimetria Facial/cirurgia , Estética Dentária , Zigoma/cirurgia , Fraturas Zigomáticas/diagnóstico por imagem , Fraturas Zigomáticas/cirurgia
2.
Biomaterials ; 308: 122540, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537343

RESUMO

Helicobacter pylori (H. pylori) infection is a major cause of gastric diseases. Currently, bismuth-based quadruple therapy is widely adopted for eradicating H. pylori infection. However, this first-line strategy faces several challenges such as drug resistance, intestinal dysbacteriosis, and patients' poor compliance. To overcome these problems, an all-in-one therapeutic platform (CLA-Bi-ZnO2@Lipo) that composed of liposomes loading clarithromycin (CLA), Bi, and ZnO2 hybrid nanoparticles was developed for eradicating multidrug-resistant (MDR) H. pylori. The in vitro and in vivo results showed that CLA-Bi-ZnO2@Lipo could target the infection-induced inflammatory mucosa through liposome mediated nanoparticle-tissue surface charge interaction and quickly respond to the gastric acid environment to release CLA, Bi3+, Zn2+, and H2O2. By oral administration per day, the acid triggered decomposition of CLA-Bi-ZnO2@Lipo could significantly increase intragastric pH to 6 within 30 min; The released CLA, Zn2+, and H2O2 further exerted synergistical anti-bacterial effects in which a ∼2 order higher efficacy in reducing MDR H. pylori burden was achieved in comparison with standard quadruple therapy (p < 0.05); The released Zn2+ and Bi3+ could also alleviate mucosal inflammation. Most importantly, the CLA-Bi-ZnO2@Lipo exhibited superior biosafety and nearly no side effects on intestinal flora. Overall, this study developed a highly integrated and safe anti-MDR H. pylori agent which had great potential to be used as an alternative treatment for MDR H. pylori eradication.


Assuntos
Antibacterianos , Bismuto , Claritromicina , Infecções por Helicobacter , Helicobacter pylori , Lipossomos , Helicobacter pylori/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Animais , Bismuto/química , Bismuto/uso terapêutico , Bismuto/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Lipossomos/química , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Camundongos , Peróxido de Hidrogênio/metabolismo , Masculino
3.
Front Microbiol ; 13: 810746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359746

RESUMO

Blue light (BL) at 405 nm and oregano essential oil (OEO) have shown bactericidal activity by its own. Here, we demonstrated that the two synergistically killed multidrug-resistant (MDR) Pseudomonas aeruginosa (Pa). Pa ATCC19660 and HS0065 planktonic cells and mature biofilms were reduced by more than 7 log10 after treatment by BL combined with OEO, in sharp contrast to no significant bacterial reduction with the monotreatment. The duo also sufficiently eliminated acute or biofilm-associated infection of open burn wounds in murine without incurring any harmful events in the skin. The synergic bactericide was attributed mainly to the ability of OEO to magnify cytotoxic reactive oxygen species (ROS) production initiated by BL that excited endogenous tetrapyrrole macrocycles in bacteria while completely sparing the surrounding tissues from the phototoxic action. OEO ingredient analysis in combination with microbial assays identified carvacrol and its isomer thymol to be the major phytochemicals that cooperated with BL executing synergic killing. The finding argues persuasively for valuable references of carvacrol and thymol in assessing and standardizing the bactericidal potential of various OEO products.

4.
J Photochem Photobiol B ; 230: 112427, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35338920

RESUMO

Fewer antibiotics are available for effective management of bacterial infections to date owing to increasing multiple-drug resistance (MDR). Here, we expand our early success in combination of 405 nm blue light irradiation with phenolic compounds to sufficiently kill blue light-refractory MDR Escherichia coli (E. coli). p-Toluquinone (p-TQ) alongside blue light inactivated 7.3 log10E. coli within 6 min, whereas either alone was totally ineffective. A similar killing efficacy was attained with four other pathogens commonly seen in hospital-acquired infections and Enterococcus faecalis (Ef) that don't produce porphyrins-like molecules. The combinatory therapy prevented recurrence of E. coli infection in skin scratch wounds of murine. The bactericidal activity was ascribed to reactive oxygen species (ROS) generation triggered by blue light-mediated excitation of p-TQ, which is less likely to induce resistance because of multi-targeted and non-specific nature of ROS. Remarkably, toxic p-TQ became harmless to mammalian cells after brief exposure to blue light while retaining its bactericidal activity. The opposite effect of blue light on p-TQ activity unravels a novel, simple strategy to detoxify p-TQ and its combination with blue light as a safe and efficacious bactericidal modality for managing MDR bacterial infections.


Assuntos
Infecções Bacterianas , Escherichia coli , Animais , Antibacterianos/farmacologia , Benzoquinonas , Luz , Mamíferos , Camundongos , Espécies Reativas de Oxigênio/farmacologia
5.
J Mech Behav Biomed Mater ; 120: 104541, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34062372

RESUMO

Poly-ether-ether-ketone (PEEK) has been the promising implantation material since it was first applied in the medical field in the 1990s. With its irreplaceable advantages, such as high mechanical and biological properties, human-like tensile strength and elastic modulus, and excellent physical and chemical stability, PEEK has been regarded as an excellent implantation material, and has been widely used in orthopedics, reconstructive surgery, and dentistry. However, PEEK also has an obvious shortcoming of poor bone compatibility due to its inherent hydrophobicity and bio-inertia, which is a great challenge for its prospect. In the present study, based on the acknowledged fact that enhancing the roughness of PEEK can improve its bone compatibility, modified porous PEEK implants with different porosities (40%, 50%, 60% and solid) were fabricated by Fused Deposition Modeling (FDM), and experiments in vitro and in vivo were conducted to determine whether the bone compatibility can be improved, and compare the biological properties between different porosities. These results indicate that both in vitro and in vivo, the bone compatibility of the modified porous PEEK has been strongly improved, when compared to the control group (solid PEEK implants). In vitro and in vivo, the 40%-porosity-PEEK possessed the highest bone compatibility.


Assuntos
Éter , Cetonas , Éteres , Humanos , Polietilenoglicóis , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA