Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(9): 3687-3693, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37093047

RESUMO

Infrared-pump, electronic-probe (IPEP) spectroscopy is used to measure heat flow into and out of CdSe nanocrystals suspended in an organic solvent, where the surface ligands are initially excited with an infrared pump pulse. Subsequently, the heat is transferred from the excited ligands to the nanocrystals and in parallel to the solvent. Parallel heat transfer in opposite directions uniquely enables us to differentiate the thermal conductances at the nanocrystal/ligand and ligand/solvent interfaces. Using a novel solution to the heat diffusion equation, we fit the IPEP data to find that the nanocrystal/ligand conductances range from 88 to 135 MW m-2 K-1 and are approximately 1 order of magnitude higher than the ligand/solvent conductances, which range from 7 to 26 MW m-2 K-1. Transient nonequilibrium molecular dynamics (MD) simulations of nanocrystal suspensions agree with IPEP data and show that ligands bound to the nanocrystal by bidentate bonds have more than twice the per-ligand conductance as those bound by monodentate bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA