Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Appl Clin Med Phys ; 22(10): 320-328, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34469057

RESUMO

OBJECTIVE: The objective of this article is to introduce a simplified and swift method to satisfactorily estimate the half-value layers (HVL), quarter-value layer (QVL), and tenth-value layer (TVL) from the x-ray spectra emitted by any diagnostic radiology or kV radiotherapy x-ray tubes. METHODS: A CdTe x-ray and Gamma detector (X-123 CdTe, AmpTek Inc.) is used to measure the x-ray spectra at four different x-ray energies (low, mid, high energy x-rays) with different external filtering. The software "SpekCalc GUI" (Developed in McGill University, Montreal, Canada) is also used to obtain the simulated x-ray spectra. Both measured and simulated spectra are used to compute the HVL thicknesses of Aluminum by a mathematical method presented in this article. Next, the HVL thicknesses for corresponding tube potentials are also measured by calibrated ionization chamber and varying thicknesses of aluminum plates. Finally, the computed and measured HVL, QVL, and TVL thicknesses are compared to evaluate the efficacy of the presented method. RESULTS: The results show acceptable concordance between computed and measured quantities. The disagreement rates between measured HVL and the values derived mathematically from the x-ray spectra are 10 to 90 micrometers of Aluminum at tube potentials of 31 kV to 120 kV. As it is shown, a negligible discrepancy is observed between the analytical estimation and the experimental assessments. CONCLUSION: The HVL is an essential component in the evaluation of the quality of an x-ray beam. However, its measurement could occasionally be challenging, time-consuming, or uncertain due to some technical difficulties. Although the scope of this study is not to undermine the value of conventional and widely accepted practice to determine the HVL thickness, the introduced method provides the fast, more convenient, and comparably reliable technique to estimate the HVL, QVL, and TVL by employing the given x-ray spectrum.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Humanos , Telúrio , Raios X
2.
J Xray Sci Technol ; 23(6): 667-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26756405

RESUMO

The objective of this study was to investigate the optimization of a high energy in-line phase sensitive x-ray imaging prototype under different geometric and operating conditions for mammography application. A phase retrieval algorithm based on phase attenuation duality (PAD) was applied to the phase contrast images acquired by the prototype. Imaging performance was investigated at four magnification values of 1.67, 2, 2.5 and 3 using an acrylic edge, an American College of Radiology (ACR) mammography phantom and contrast detail (CD) phantom with tube potentials of 100, 120 and 140 kVp. The ACR and CD images were acquired at the same mean glandular dose (MGD) of 1.29 mGy with a computed radiography (CR) detector of 43.75 µm pixel pitch at a fixed source to image distance (SID) of 170 cm. The x-ray tube focal spot size was kept constant as 7 µm while a 2.5 mm thick aluminum (Al) filter was used for beam hardening. The performance of phase contrast and phase retrieved images were compared with computer simulations based on the relative phase contrast factor (RPF) at high x-ray energies. The imaging results showed that the x-ray tube operated at 100 kVp under the magnification of 2.5 exhibits superior imaging performance which is in accordance to the computer simulations. As compared to the phase contrast images, the phase retrieved images of the ACR and CD phantoms demonstrated improved imaging contrast and target discrimination. We compared the CD phantom images acquired in conventional contact mode with and without the anti-scatter grid using the same prototype at 1.295 mGy and 2.59 mGy using 40 kVp, a 25 µm rhodium (Rh) filter. At the same radiation dose, the phase sensitive images provided improved detection capabilities for both the large and small discs, while compared to the double dose image acquired in conventional mode, the observer study also indicated that the phase sensitive images provided improved detection capabilities for the large discs. This study therefore validates the potential of using high energy phase contrast x-ray imaging to improve lesion detection and reduce radiation dose for clinical applications such as mammography.


Assuntos
Absorção de Radiação , Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Exposição à Radiação/prevenção & controle , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Humanos , Mamografia/instrumentação , Imagens de Fantasmas , Doses de Radiação , Exposição à Radiação/análise , Proteção Radiológica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Med Phys ; 48(5): 2511-2520, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33523479

RESUMO

BACKGROUND: This article reports the first x-ray phase sensitive breast tomosynthesis (PBT) system that is aimed for direct translation to clinical practice for the diagnosis of breast cancer. PURPOSE: To report the preclinical evaluation and comparison of the newly built PBT system with a conventional digital breast tomosynthesis (DBT) system. METHODS AND MATERIALS: The PBT system is developed based on a comprehensive inline phase contrast theoretical model. The system consists of a polyenergetic microfocus x-ray source and a flat panel detector mounted on an arm that is attached to a rotating gantry. It acquires nine projections over a 15° angular span in a stop-and-shoot manner. A dedicated phase retrieval algorithm is integrated with a filtered back-projection method that reconstructs tomographic slices. The American College of Radiology (ACR) accreditation phantom, a contrast detail (CD) phantom and mastectomy tissue samples were imaged at the same glandular dose levels by both the PBT and a standard of care DBT system for image quality characterizations and comparisons. RESULTS: The PBT imaging scores with the ACR phantom are in good to excellent range and meet the quality assurance criteria set by the Mammography Quality Standard Act. The CD phantom image comparison and associated statistical analyses from two-alternative forced-choice reader studies confirm the improvement offered by the PBT system in terms of contrast resolution, spatial resolution, and conspicuity. The artifact spread function (ASF) analyses revealed a sizable lateral spread of metal artifacts in PBT slices as compared to DBT slices. Signal-to-noise ratio values for various inserts of the ACR and CD phantoms further validated the superiority of the PBT system. Mastectomy sample images acquired by the PBT system showed a superior depiction of microcalcifications vs the DBT system. CONCLUSION: The PBT imaging technology can be clinically employed for improving the accuracy of breast cancer screening and diagnosis.


Assuntos
Neoplasias da Mama , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Humanos , Mamografia , Mastectomia , Imagens de Fantasmas , Intensificação de Imagem Radiográfica , Raios X
4.
Exp Biol Med (Maywood) ; 245(13): 1096-1103, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32588660

RESUMO

IMPACT STATEMENT: The impact of the COVID-19 pandemic has been worldwide, and clinicians and researchers around the world have been working to develop effective and efficient methods for early detection as well as monitoring of the disease progression. This minireview compiles the various agency and expert recommendations, along with results from studies published in numerous countries, in an effort to facilitate the research in imaging technology development to benefit the detection and monitoring of COVID-19. To the best of our knowledge, this is the first review paper on the topic, and it provides a brief, yet comprehensive analysis.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Betacoronavirus , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Progressão da Doença , Humanos , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2
5.
Phys Med ; 47: 34-41, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29609816

RESUMO

This study compared the detectability of simulated tumors using a high-energy X-ray inline phase sensitive digital breast tomosynthesis (DBT) prototype and a commercial attenuation-based DBT system. Each system imaged a 5-cm thick modular breast phantom with 50-50 adipose-glandular percentage density containing contrast-detail (CD) test objects to simulate different tumor sizes. A commercial DBT system acquired 15 projection views over 15 degrees (15d-15p) was used to acquire the attenuation-based projection views and to reconstruct the conventional DBT slices. Attenuation-based projection views were acquired at 32 kV, 46 mAs with a mean glandular dose (Dg) of 1.6 mGy. For acquiring phase sensitive projection views, the prototype utilized two acquisition geometries: 11 projection views were acquired over 15 degrees (15d-11p), and 17 projection views were acquired over 16 degrees (16d-17p) at 120 kV, 5.27 mAs with 1.51 mGy under the magnification (M) of 2. A phase retrieval algorithm based on the phase-attenuation duality (PAD) was applied to each projection view, and a modified Feldkamp-Davis-Kress (FDK) algorithm was used to reconstruct the phase sensitive DBT slices. Simulated tumor margins were rated as more conspicuous and better visualized for both phase sensitive acquisition geometries versus conventional DBT imaging. The CD curves confirmed the improvement in both contrast and spatial resolutions with the phase sensitive DBT imaging. The superiority of the phase sensitive DBT imaging was further endorsed by higher contrast to noise ratio (CNR) and figure-of-merit (FOM) values. The CNR improvements provided by the phase sensitive DBT prototype were sufficient to offset the noise reduction provided by the attenuation-based DBT imaging.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/instrumentação , Imagens de Fantasmas , Algoritmos , Neoplasias da Mama/patologia , Razão Sinal-Ruído , Carga Tumoral , Raios X
6.
Phys Med Biol ; 62(9): 3523-3538, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28379851

RESUMO

The objective of this study was to demonstrate the potential benefits of using high energy x-rays in comparison with the conventional mammography imaging systems for phase sensitive imaging of breast tissues with varying glandular-adipose ratios. This study employed two modular phantoms simulating the glandular (G) and adipose (A) breast tissue composition in 50 G-50 A and 70 G-30 A percentage densities. Each phantom had a thickness of 5 cm with a contrast detail test pattern embedded in the middle. For both phantoms, the phase contrast images were acquired using a micro-focus x-ray source operated at 120 kVp and 4.5 mAs, with a magnification factor (M) of 2.5 and a detector with a 50 µm pixel pitch. The mean glandular dose delivered to the 50 G-50 A and 70 G-30 A phantom sets were 1.33 and 1.3 mGy, respectively. A phase retrieval algorithm based on the phase attenuation duality that required only a single phase contrast image was applied. Conventional low energy mammography images were acquired using GE Senographe DS and Hologic Selenia systems utilizing their automatic exposure control (AEC) settings. In addition, the automatic contrast mode (CNT) was also used for the acquisition with the GE system. The AEC mode applied higher dose settings for the 70 G-30 A phantom set. As compared to the phase contrast images, the dose levels for the AEC mode acquired images were similar while the dose levels for the CNT mode were almost double. The observer study, contrast-to-noise ratio and figure of merit comparisons indicated a large improvement with the phase retrieved images in comparison to the AEC mode images acquired with the clinical systems for both density levels. As the glandular composition increased, the detectability of smaller discs decreased with the clinical systems, particularly with the GE system, even at higher dose settings. As compared to the CNT mode (double dose) images, the observer study also indicated that the phase retrieved images provided similar or improved detection for all disc sizes except for the disk diameters of 2 mm and 1 mm for the 50 G-50 A phantom and 3 mm and 0.5 mm for the 70 G-30 A phantom. This study demonstrated the potential of utilizing a high energy phase sensitive x-ray imaging system to improve lesion detection and reduce radiation dose when imaging breast tissues with varying glandular compositions.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Glândulas Mamárias Humanas/diagnóstico por imagem , Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , Humanos , Mamografia/normas , Imagens de Fantasmas
7.
Nucl Instrum Methods Phys Res A ; 853: 70-77, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28959083

RESUMO

The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16-50 µm as the source output power changes from 10-39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (µA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 µm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 µm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications.

8.
Med Phys ; 42(5): 2404-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25979035

RESUMO

PURPOSE: In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. METHODS: The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. RESULTS: The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. CONCLUSIONS: This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis prototype. In addition, the PAD-based method of phase retrieval was combined with tomosynthesis imaging for the first time, which demonstrated its capability in significantly improving the contrast-to-noise ratios in the images.


Assuntos
Radiologia/instrumentação , Radiologia/métodos , Animais , Osso e Ossos/diagnóstico por imagem , Galinhas , Desenho de Equipamento , Peixes , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas , Plásticos , Radiografia , Raios X
9.
Med Phys ; 40(5): 051901, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635271

RESUMO

PURPOSE: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. METHODS: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signal radiation acquired after the GNP solutions are inserted. RESULTS: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. CONCLUSIONS: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.


Assuntos
Ouro/química , Ouro/metabolismo , Nanopartículas Metálicas/química , Imagem Molecular/métodos , Espectrometria por Raios X , Animais , Calibragem , Galinhas , Glândulas Mamárias Animais/metabolismo , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA