Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2303928120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494398

RESUMO

Although sensor technologies have allowed us to outperform the human senses of sight, hearing, and touch, the development of artificial noses is significantly behind their biological counterparts. This largely stems from the sophistication of natural olfaction, which relies on both fluid dynamics within the nasal anatomy and the response patterns of hundreds to thousands of unique molecular-scale receptors. We designed a sensing approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us to extract information from a single sensor (here, the reflectance spectra from a mesoporous one-dimensional photonic crystal) rather than relying on a large sensor array. By accentuating differences in the nonequilibrium mass-transport dynamics of vapors and training a machine learning algorithm on the sensor output, we clearly identified polar and nonpolar volatile compounds, determined the mixing ratios of binary mixtures, and accurately predicted the boiling point, flash point, vapor pressure, and viscosity of a number of volatile liquids, including several that had not been used for training the model. We further implemented a bioinspired active sniffing approach, in which the analyte delivery was performed in well-controlled 'inhale-exhale' sequences, enabling an additional modality of differentiation and reducing the duration of data collection and analysis to seconds. Our results outline a strategy to build accurate and rapid artificial noses for volatile compounds that can provide useful information such as the composition and physical properties of chemicals, and can be applied in a variety of fields, including disease diagnosis, hazardous waste management, and healthy building monitoring.


Assuntos
Nariz , Olfato , Humanos , Nariz Eletrônico , Aprendizado de Máquina , Gases
2.
FASEB J ; 38(1): e23343, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071602

RESUMO

Caveolin-1 (CAV1), the main structural component of caveolae, is phosphorylated at tyrosine-14 (pCAV1), regulates signal transduction, mechanotransduction, and mitochondrial function, and plays contrasting roles in cancer progression. We report that CRISPR/Cas9 knockout (KO) of CAV1 increases mitochondrial oxidative phosphorylation, increases mitochondrial potential, and reduces ROS in MDA-MB-231 triple-negative breast cancer cells. Supporting a role for pCAV1, these effects are reversed upon expression of CAV1 phosphomimetic CAV1 Y14D but not non-phosphorylatable CAV1 Y14F. pCAV1 is a known effector of Rho-associated kinase (ROCK) signaling and ROCK1/2 signaling mediates CAV1 promotion of increased mitochondrial potential and decreased ROS production in MDA-MB-231 cells. CAV1/ROCK control of mitochondrial potential and ROS is caveolae-independent as similar results were observed in PC3 prostate cancer cells lacking caveolae. Increased mitochondrial health and reduced ROS in CAV1 KO MDA-MB-231 cells were reversed by knockdown of the autophagy protein ATG5, mitophagy regulator PINK1 or the mitochondrial fission protein Drp1 and therefore due to mitophagy. Use of the mitoKeima mitophagy probe confirmed that CAV1 signaling through ROCK inhibited basal mitophagic flux. Activation of AMPK, a major mitochondrial homeostasis protein inhibited by ROCK, is inhibited by CAV1-ROCK signaling and mediates the increased mitochondrial potential, decreased ROS, and decreased basal mitophagy flux observed in wild-type MDA-MB-231 cells. CAV1 regulation of mitochondrial health and ROS in cancer cells therefore occurs via ROCK-dependent inhibition of AMPK. This study therefore links pCAV1 signaling activity at the plasma membrane with its regulation of mitochondrial activity and cancer cell metabolism through control of mitophagy.


Assuntos
Caveolina 1 , Neoplasias da Próstata , Masculino , Humanos , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mecanotransdução Celular , Mitocôndrias/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Mitocondriais/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
3.
J Card Fail ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493832

RESUMO

BACKGROUND: This open-label phase 2 trial evaluated the safety and efficacy of aficamten in patients with nonobstructive hypertrophic cardiomyopathy (nHCM). METHODS: Patients with symptomatic nHCM (left ventricular outflow tract obstruction gradient ≤ 30 mmHg, left ventricular ejection fraction [LVEF] ≥ 60%, N-terminal pro-B-type natriuretic peptide [NT-proBNP] > 300 pg/mL) received aficamten 5-15 mg once daily (doses adjusted according to echocardiographic LVEF) for 10 weeks. RESULTS: We enrolled 41 patients (mean ± SD age 56 ± 16 years; 59% female). At Week 10, 22 (55%) patients experienced an improvement of ≥ 1 New York Heart Association class; 11 (29%) became asymptomatic. Clinically relevant improvements in Kansas City Cardiomyopathy Questionnaire Clinical Summary Scores occurred in 22 (55%) patients. Symptom relief was paralleled by reductions in NT-proBNP levels (56%; P < 0.001) and high-sensitivity cardiac troponin I (22%; P < 0.005). Modest reductions in LVEF (mean ± SD) of -5.4% ± 10 to 64.6% ± 9.1 were observed. Three (8%) patients had asymptomatic reduction in LVEF < 50% (range: 41%-48%), all returning to normal after 2 weeks of washout. One patient with prior history of aborted sudden cardiac death experienced a fatal arrhythmia during the study. CONCLUSIONS: Aficamten administration for symptomatic nHCM was generally safe and was associated with improvements in heart failure symptoms and cardiac biomarkers. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04219826.

4.
FASEB J ; 37(8): e23097, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37440280

RESUMO

Colorectal cancer (CRC) is a high prevalence adenocarcinoma with progressive increases in metastasis-related mortality, but the mechanisms governing the extracellular matrix (ECM) degradation important for metastasis in CRC are not well-defined. We investigated a functional relationship between vimentin (Vim) and myosin 10 (Myo10), and whether this relationship is associated with cancer progression. We tested the hypothesis that Vim regulates the aggregation of Myo10 at the tips of cell extensions, which increases membrane-type 1 matrix metalloproteinase (MT1-MMP)-associated local collagen proteolysis and ECM degradation. Analysis of CRC samples revealed colocalization of Vim with Myo10 and MT1-MMP in cell extensions adjacent to sites of collagen degradation, suggesting an association with local cell invasion. We analyzed cultured CRC cells and fibroblasts and found that Vim accelerates aggregation of Myo10 at cell tips, which increases the cell extension rate. Vim stabilizes the interaction of Myo10 with MT1-MMP, which in turn increases collagenolysis. Vim depletion reduced the aggregation of Myo10 at the cell extension tips and MT1-MMP-dependent collagenolysis. We propose that Vim interacts with Myo10, which in turn associates with MT1-MMP to facilitate the transport of these molecules to the termini of cell extensions and there enhance cancer invasion of soft connective tissues.


Assuntos
Neoplasias Colorretais , Metaloproteinase 14 da Matriz , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Vimentina/metabolismo , Colágeno , Miosinas
5.
J Cardiovasc Magn Reson ; 25(1): 21, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973744

RESUMO

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic that has affected nearly 600 million people to date across the world. While COVID-19 is primarily a respiratory illness, cardiac injury is also known to occur. Cardiovascular magnetic resonance (CMR) imaging is uniquely capable of characterizing myocardial tissue properties in-vivo, enabling insights into the pattern and degree of cardiac injury. The reported prevalence of myocardial involvement identified by CMR in the context of COVID-19 infection among previously hospitalized patients ranges from 26 to 60%. Variations in the reported prevalence of myocardial involvement may result from differing patient populations (e.g. differences in severity of illness) and the varying intervals between acute infection and CMR evaluation. Standardized methodologies in image acquisition, analysis, interpretation, and reporting of CMR abnormalities across would likely improve concordance between studies. This consensus document by the Society for Cardiovascular Magnetic Resonance (SCMR) provides recommendations on CMR imaging and reporting metrics towards the goal of improved standardization and uniform data acquisition and analytic approaches when performing CMR in patients with COVID-19 infection.


Assuntos
COVID-19 , Cardiopatias , Imageamento por Ressonância Magnética , Humanos , COVID-19/complicações , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Espectroscopia de Ressonância Magnética , Miocardite/diagnóstico por imagem , Valor Preditivo dos Testes , Cardiopatias/diagnóstico por imagem , Cardiopatias/etiologia
6.
J Biomech Eng ; 144(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549255

RESUMO

This study aimed to demonstrate feasibility of statistical shape analysis techniques to identify distinguishing features of right ventricle (RV) shape as related to hemodynamic variables and outcome data in pulmonary hypertension (PH). Cardiovascular magnetic resonance images were acquired from 50 patients (33 PH, 17 non-PH). Contemporaneous right heart catheterization data were collected for all individuals. Outcome was defined by all-cause mortality and hospitalization for heart failure. RV endocardial borders were manually segmented, and three-dimensional surfaces reconstructed at end diastole and end systole. Registration and harmonic mapping were then used to create a quantitative correspondence between all RV surfaces. Proper orthogonal decomposition was performed to generate modes describing RV shape features. The first 15 modes captured over 98% of the total modal energy. Two shape modes, 8 (free wall expansion) and 13 (septal flattening), stood out as relating to PH state (mode 13: r = 0.424, p = 0.002; mode 8: r = 0.429, p = 0.002). Mode 13 was significantly correlated with outcome (r = 0.438, p = 0.001), more so than any hemodynamic variable. Shape analysis techniques can derive unique RV shape descriptors corresponding to specific, anatomically meaningful features. The modes quantify shape features that had been previously only qualitatively related to PH progression. Modes describing relevant RV features are shown to correlate with clinical measures of RV status, as well as outcomes. These new shape descriptors lay the groundwork for a noninvasive strategy for identification of failing RVs, beyond what is currently available to clinicians.


Assuntos
Ventrículos do Coração , Hipertensão Pulmonar , Estudos de Viabilidade , Ventrículos do Coração/patologia , Hemodinâmica , Humanos
7.
Cancer Metastasis Rev ; 39(2): 455-469, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32440845

RESUMO

Caveolin-1 (CAV1) has long been implicated in cancer progression, and while widely accepted as an oncogenic protein, CAV1 also has tumor suppressor activity. CAV1 was first identified in an early study as the primary substrate of Src kinase, a potent oncoprotein, where its phosphorylation correlated with cellular transformation. Indeed, CAV1 phosphorylation on tyrosine-14 (Y14; pCAV1) has been associated with several cancer-associated processes such as focal adhesion dynamics, tumor cell migration and invasion, growth suppression, cancer cell metabolism, and mechanical and oxidative stress. Despite this, a clear understanding of the role of Y14-phosphorylated pCAV1 in cancer progression has not been thoroughly established. Here, we provide an overview of the role of Src-dependent phosphorylation of tumor cell CAV1 in cancer progression, focusing on pCAV1 in tumor cell migration, focal adhesion signaling and metabolism, and in the cancer cell response to stress pathways characteristic of the tumor microenvironment. We also discuss a model for Y14 phosphorylation regulation of CAV1 effector protein interactions via the caveolin scaffolding domain.


Assuntos
Caveolina 1/metabolismo , Neoplasias/metabolismo , Tirosina/metabolismo , Animais , Movimento Celular/fisiologia , Progressão da Doença , Adesões Focais/metabolismo , Humanos , Neoplasias/patologia , Fosforilação , Quinases da Família src/metabolismo
8.
J Med Syst ; 45(10): 92, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494167

RESUMO

The Acute Care Surgery model has been implemented by many hospitals in the United States. As complex adaptive systems, healthcare systems are composed of many interacting elements that respond to intrinsic and extrinsic inputs. Systems level analysis may reveal the underlying organizational structure of tactical block allocations like the Acute Care Surgery model. The purpose of this study is to demonstrate one method to identify a key characteristic of complex adaptive systems in the perioperative services. Start and end times for all surgeries performed at the University of Vermont Medical Center OR1 were extracted for two years prior to the transition to an Acute Care Surgery service and two years following the transition. Histograms were plotted for the inter-event times calculated from the difference between surgical cases. A power law distribution was fit to the post-transition histogram. The Kolmogorov-Smirnov test for goodness-of-fit at 95% level of significance shows the histogram plotted from post-transition inter-event times follows a power law distribution (K-S = 0.088, p = 0.068), indicating a Complex Adaptive System. Our analysis demonstrates that the strategic decision to create an Acute Care Surgery service has direct implications on tactical and operational processes in the perioperative services. Elements of complex adaptive systems can be represented by a power law distributions and similar methods may be applied to identify other processes that operate as complex adaptive systems in perioperative care. To make sustained improvements in the perioperative services, focus on manufacturing-based interventions such as Lean Six Sigma should instead be shifted towards the complex interventions that modify system-specific behaviors described by complex adaptive system principles when power law relationships are present.


Assuntos
Hospitais , Salas Cirúrgicas , Cuidados Críticos , Atenção à Saúde , Humanos , Gestão da Qualidade Total , Estados Unidos
9.
Medicina (Kaunas) ; 57(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925784

RESUMO

Background and Objectives: Long COVID defines a series of chronic symptoms that patients may experience after resolution of acute COVID-19. Early reports from studies with patients with long COVID suggests a constellation of symptoms with similarities to another chronic medical illness-myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A review study comparing and contrasting ME/CFS with reported symptoms of long COVID may yield mutualistic insight into the characterization and management of both conditions. Materials and Methods: A systemic literature search was conducted in MEDLINE and PsycInfo through to 31 January 2021 for studies related to long COVID symptomatology. The literature search was conducted in accordance with PRISMA methodology. Results: Twenty-one studies were included in the qualitative analysis. Long COVID symptoms reported by the included studies were compared to a list of ME/CFS symptoms compiled from multiple case definitions. Twenty-five out of 29 known ME/CFS symptoms were reported by at least one selected long COVID study. Conclusions: Early studies into long COVID symptomatology suggest many overlaps with clinical presentation of ME/CFS. The need for monitoring and treatment for patients post-COVID is evident. Advancements and standardization of long COVID research methodologies would improve the quality of future research, and may allow further investigations into the similarities and differences between long COVID and ME/CFS.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/diagnóstico , Projetos de Pesquisa , SARS-CoV-2
10.
J Cardiovasc Magn Reson ; 22(1): 61, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32878639

RESUMO

The aim of this document is to provide specific recommendations on the use of cardiovascular magnetic resonance (CMR) protocols in the era of the COVID-19 pandemic. In patients without COVID-19, standard CMR protocols should be used based on clinical indication as usual. Protocols used in patients who have known / suspected active COVID-19 or post COVID-19 should be performed based on the specific clinical question with an emphasis on cardiac function and myocardial tissue characterization. Short and dedicated protocols are recommended.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Infecções por Coronavirus/prevenção & controle , Controle de Infecções/organização & administração , Imagem Cinética por Ressonância Magnética/normas , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Guias de Prática Clínica como Assunto , COVID-19 , Infecções por Coronavirus/epidemiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Índice de Gravidade de Doença , Sociedades Médicas , Estados Unidos
11.
J Cardiovasc Magn Reson ; 22(1): 58, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32772930

RESUMO

During the peak phase of the COVID-19 pandemic, alterations of standard operating procedures were necessary for health systems to protect patients and healthcare workers and ensure access to vital hospital resources. As the peak phase passes, re-activation plans are required to safely manage increasing clinical volumes. In the context of cardiovascular magnetic resonance (CMR), re-activation objectives include continued performance of urgent CMR studies and resumption of CMR in patients with semi-urgent and elective indications in an environment that is safe for both patients and health care workers.


Assuntos
Betacoronavirus , Doenças Cardiovasculares/diagnóstico por imagem , Infecções por Coronavirus/prevenção & controle , Imageamento por Ressonância Magnética/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Guias de Prática Clínica como Assunto , COVID-19 , Sistema Cardiovascular/diagnóstico por imagem , Humanos , Valor Preditivo dos Testes , SARS-CoV-2 , Sociedades Médicas
12.
Cereb Cortex ; 29(3): 1280-1290, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462287

RESUMO

Neural progenitor proliferation and cell fate decision from self-renewal to differentiation are crucial factors in determining brain size and morphology. The cytoskeletal dependent regulation of these processes is not entirely known. The actin-binding filamin A (FlnA) was shown to regulate proliferation of progenitors by directing changes in cell cycles proteins such as Cdk1 during G2/M phase. Here we report that functional loss of FlnA not only affects the rate of proliferation by altering cell cycle length but also causes a defect in early differentiation through changes in cell fate specification. FlnA interacts with Rho GTPase RhoA, and FlnA loss impairs RhoA activation. Disruption of either of these cytoskeletal associated proteins delays neurogenesis and promotes neural progenitors to remain in proliferative states. Aurora kinase B (Aurkb) has been implicated in cytokinesis, and peaks in expression during the G2/M phase. Inhibition of FlnA or RhoA impairs Aurkb degradation and alters its localization during mitosis. Overexpression of Aurkb replicates the same delay in neurogenesis seen with loss of FlnA or RhoA. Our findings suggest that shared cytoskeletal processes can direct neural progenitor proliferation by regulating the expression and localization of proteins that are implicated in the cell cycle progression and cell fate specification.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Citoesqueleto/fisiologia , Filaminas/fisiologia , Mitose/fisiologia , Células-Tronco Neurais/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Aurora Quinase B/fisiologia , Diferenciação Celular , Proliferação de Células , Camundongos , Neurogênese
13.
J Electrocardiol ; 58: 80-86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31785580

RESUMO

INTRODUCTION: Left ventricular hypertrophy (LVH), defined as an increased left ventricular mass (LVM), can manifest as increased wall thickness, ventricular dilatation, or both. Existing LVH criteria from the electrocardiogram (ECG) have poor sensitivity. However, it is unknown whether changes in wall thickness and mass, respectively, can be separately detected by the ECG. METHODS: Patients undergoing cardiovascular magnetic resonance and resting 12-lead ECG were included. Exclusion criteria were clinical confounders that might influence the ECG, including myocardial scar. Advanced ECG (A-ECG) analysis included conventional ECG measures and amplitudes, derived vectorcardiographic and polarcardiographic measures, and singular value decomposition of waveform complexity. A-ECG scores for 1) increased LVM index (LVMI), and 2) increased global wall thickness index (GTI) beyond the upper limit of normal in healthy volunteers, respectively, were derived using multivariable logistic regression. The area under the curve (AUC) and its bootstrapped confidence interval (CI) for each score were compared to those of conventional ECG-LVH criteria including Cornell voltage, Cornell product, and Sokolow-Lyon voltage criteria. RESULTS: Out of 485 patients (median [interquartile range] age 51 [38-61] years, 54% female), 51 (11%) had increased LVMI and 65 (13%) had increased GTI. The A-ECG scores for increased LVMI (AUC [95% CI] 0.84 [0.78-0.90]), and increased GTI (0.80 [0.74-0.85]) differed, and had a higher AUC than the conventional ECG-LVH criteria (p < 0.001 for all). CONCLUSIONS: Increased LVMI differed from increased GTI in its electrocardiographic manifestation by A-ECG. New A-ECG scores outperform conventional ECG criteria for LVH in determining increased LVMI and GTI, respectively.


Assuntos
Eletrocardiografia , Hipertrofia Ventricular Esquerda , Feminino , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Miocárdio
14.
Sensors (Basel) ; 20(10)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429533

RESUMO

Volatile organic compounds (VOCs) are prevalent in daily life, from the lab environment to industrial applications, providing tremendous functionality but also posing significant health risk. Moreover, individual VOCs have individual risks associated with them, making classification and sensing of a broad range of VOCs important. This work details the application of electrochemically dealloyed nanoporous gold (NPG) as a VOC sensor through measurements of the complex electrical frequency response of NPG. By leveraging the effects of adsorption and capillary condensation on the electrical properties of NPG itself, classification and regression is possible. Due to the complex nonlinearities, classification and regression are done through the use of a convolutional neural network. This work also establishes key strategies for improving the performance of NPG, both in sensitivity and selectivity. This is achieved by tuning the electrochemical dealloying process through manipulations of the starting alloy and through functionalization with 1-dodecanethiol.

15.
J Cell Physiol ; 234(3): 3078-3087, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30191966

RESUMO

Bone repair after trauma or surgical intervention involves a tightly regulated cascade of events that starts with hemostasis and an inflammatory response, which are critical for successful healing. Nonsteroidal anti-inflammatory drugs (NSAID) are routinely prescribed for pain relief despite their potential inhibitory effect on bone repair. The goal of this study was to determine the impact of administration of the non-selective NSAID diclofenac in the inflammatory phase of bone repair in mice with or without lipopolysaccharide-induced systemic inflammation. Repair of femoral window defects was characterized using micro computed tomography imaging and histological analyses at 2 weeks postoperative. The data indicate (a) impaired bone regeneration associated with reduced osteoblast, osteoclast, and macrophage activity; (b) changes in the number, activity, and distribution of mast cells in regenerating bone; and (c) impaired angiogenesis due to a direct toxic effect of diclofenac on vascular endothelial cells. The results of this study provide strong evidence to support the conjecture that administration of NSAIDs in the first 2 weeks after orthopaedic surgery disrupts the healing cascade and exacerbates the negative effects of systemic inflammation on the repair process.


Assuntos
Diclofenaco/farmacologia , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Ferimentos e Lesões/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células Endoteliais/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Procedimentos Ortopédicos/efeitos adversos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Dor/diagnóstico por imagem , Dor/patologia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/diagnóstico por imagem , Ferimentos e Lesões/patologia , Microtomografia por Raio-X
16.
Hum Mol Genet ; 26(7): 1294-1304, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28175289

RESUMO

Filamins are a family of actin-binding proteins responsible for diverse biological functions in the context of regulating actin dynamics and vesicle trafficking. Disruption of these proteins has been implicated in multiple human developmental disorders. To investigate the roles of different filamin isoforms, we focused on FlnA and FlnB interactions in the cartilage growth plate, since mutations in both molecules cause chondrodysplasias. Current studies show that FlnA and FlnB share a common function in stabilizing the actin cytoskeleton, they physically interact in the cytoplasm of chondrocytes, and loss of FlnA enhances FlnB expression of chondrocytes in the growth plate (and vice versa), suggesting compensation. Prolonged FlnB loss, however, promotes actin-stress fiber formation following plating onto an integrin activating substrate whereas FlnA inhibition leads to decreased actin formation. FlnA more strongly binds RhoA, although both filamins overlap with RhoA expression in the cell cytoplasm. FlnA promotes RhoA activation whereas FlnB indirectly inhibits this pathway. Moreover, FlnA loss leads to diminished expression of ß1-integrin, whereas FlnB loss promotes integrin expression. Finally, fibronectin mediated integrin activation has been shown to activate RhoA and activated RhoA leads to stress fiber formation and cell spreading. Fibronectin stimulation in null FlnA cells impairs enhanced spreading whereas FlnB inhibited cells show enhanced spreading. While filamins serve a primary static function in stabilization of the actin cytoskeleton, these studies are the first to demonstrate a dynamic and antagonistic relationship between different filamin isoforms in the dynamic regulation of integrin expression, RhoGTPase activity and actin stress fiber remodeling.


Assuntos
Filaminas/genética , Fibras de Estresse/genética , Proteína rhoA de Ligação ao GTP/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Condrócitos/metabolismo , Fibronectinas/metabolismo , Filaminas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Lâmina de Crescimento/metabolismo , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Ligação Proteica , Fibras de Estresse/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Development ; 143(23): 4509-4520, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789627

RESUMO

Actin-associated proteins regulate multiple cellular processes, including proliferation and differentiation, but the molecular mechanisms underlying these processes are unclear. Here, we report that the actin-binding protein filamin A (FlnA) physically interacts with the actin-nucleating protein formin 2 (Fmn2). Loss of FlnA and Fmn2 impairs proliferation, thereby generating multiple embryonic phenotypes, including microcephaly. FlnA interacts with the Wnt co-receptor Lrp6. Loss of FlnA and Fmn2 impairs Lrp6 endocytosis, downstream Gsk3ß activity, and ß-catenin accumulation in the nucleus. The proliferative defect in Flna and Fmn2 null neural progenitors is rescued by inhibiting Gsk3ß activity. Our findings thus reveal a novel mechanism whereby actin-associated proteins regulate proliferation by mediating the endocytosis and transportation of components in the canonical Wnt pathway. Moreover, the Fmn2-dependent signaling in this pathway parallels that seen in the non-canonical Wnt-dependent regulation of planar cell polarity through the Formin homology protein Daam. These studies provide evidence for integration of actin-associated processes in directing neuroepithelial proliferation.


Assuntos
Proliferação de Células/fisiologia , Endocitose/fisiologia , Filaminas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Membrana Celular/fisiologia , Proliferação de Células/genética , Filaminas/genética , Forminas , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Knockout , Microcefalia/genética , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso , Proteínas Nucleares/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
19.
Drug Metab Dispos ; 46(4): 367-379, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29343609

RESUMO

Metabolism of 25-hydroxyvitamin D3 (25OHD3) plays a central role in regulating the biologic effects of vitamin D in the body. Although cytochrome P450-dependent hydroxylation of 25OHD3 has been extensively investigated, limited information is available on the conjugation of 25OHD3 In this study, we report that 25OHD3 is selectively conjugated to 25OHD3-3-O-sulfate by human sulfotransferase 2A1 (SULT2A1) and that the liver is a primary site of metabolite formation. At a low (50 nM) concentration of 25OHD3, 25OHD3-3-O-sulfate was the most abundant metabolite, with an intrinsic clearance approximately 8-fold higher than the next most efficient metabolic route. In addition, 25OHD3 sulfonation was not inducible by the potent human pregnane X receptor agonist, rifampicin. The 25OHD3 sulfonation rates in a bank of 258 different human liver cytosols were highly variable but correlated with the rates of dehydroepiandrosterone sulfonation. Further analysis revealed a significant association between a common single nucleotide variant within intron 1 of SULT2A1 (rs296361; minor allele frequency = 15% in whites) and liver cytosolic SULT2A1 content as well as 25OHD3-3-O-sulfate formation rate, suggesting that variation in the SULT2A1 gene contributes importantly to interindividual differences in vitamin D homeostasis. Finally, 25OHD3-3-O-sulfate exhibited high affinity for the vitamin D binding protein and was detectable in human plasma and bile but not in urine samples. Thus, circulating concentrations of 25OHD3-3-O-sulfate appear to be protected from rapid renal elimination, raising the possibility that the sulfate metabolite may serve as a reservoir of 25OHD3 in vivo, and contribute indirectly to the biologic effects of vitamin D.


Assuntos
Calcifediol/sangue , Calcifediol/metabolismo , Sulfatos/metabolismo , Sulfotransferases/metabolismo , Vitamina D/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Hidroxilação/fisiologia , Lactente , Cinética , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Receptor de Pregnano X , Receptores de Esteroides/metabolismo , Adulto Jovem
20.
J Biol Chem ; 291(37): 19387-400, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27445337

RESUMO

Contact-dependent growth inhibition (CDI) is a widespread mechanism of inter-bacterial competition. CDI(+) bacteria deploy large CdiA effector proteins, which carry variable C-terminal toxin domains (CdiA-CT). CDI(+) cells also produce CdiI immunity proteins that specifically neutralize cognate CdiA-CT toxins to prevent auto-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiI(E479) toxin/immunity protein complex from Burkholderia pseudomallei isolate E479. The CdiA-CT(E479) tRNase domain contains a core α/ß-fold that is characteristic of PD(D/E)XK superfamily nucleases. Unexpectedly, the closest structural homolog of CdiA-CT(E479) is another CDI toxin domain from B. pseudomallei 1026b. Although unrelated in sequence, the two B. pseudomallei nuclease domains share similar folds and active-site architectures. By contrast, the CdiI(E479) and CdiI(1026b) immunity proteins share no significant sequence or structural homology. CdiA-CT(E479) and CdiA-CT(1026b) are both tRNases; however, each nuclease cleaves tRNA at a distinct position. We used a molecular docking approach to model each toxin bound to tRNA substrate. The resulting models fit into electron density envelopes generated by small-angle x-ray scattering analysis of catalytically inactive toxin domains bound stably to tRNA. CdiA-CT(E479) is the third CDI toxin found to have structural homology to the PD(D/E)XK superfamily. We propose that CDI systems exploit the inherent sequence variability and active-site plasticity of PD(D/E)XK nucleases to generate toxin diversity. These findings raise the possibility that many other uncharacterized CDI toxins may belong to the PD(D/E)XK superfamily.


Assuntos
Proteínas de Bactérias/química , Burkholderia pseudomallei/química , Endorribonucleases/química , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Complexos Multiproteicos/química , RNA Bacteriano/química , RNA de Transferência/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA