Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Tohoku J Exp Med ; 232(2): 145-54, 2014 02.
Artigo em Inglês | MEDLINE | ID: mdl-24573122

RESUMO

Ischemia-reperfusion has been reported to be associated with augmented oxidative stress in the course of surgery, which might be causally involved in the onset of atrial fibrillation (AF), the most common arrhythmia after cardiac surgery. We hypothesized that supplementation of antioxidants and n-3 polyunsaturated fatty acids (n-3 PUFAs) might lower the incidence of AF following coronary artery bypass graft (CABG) surgery. In the present study, by monitoring oxidative stress in the course of CABG surgery, we analyzed the efficacy of vitamins (ascorbic acid and α-tocopherol) and/or n-3 PUFAs (eicosapentaenoic acid and docosahexaenoic acid). Subjects (n = 75) were divided into 4 subgroups: control, vitamins, n-3 PUFAs, and a combination of vitamins and n-3 PUFAs. Fluorescent techniques were used to measure the antioxidative capacity, i.e. ability to inhibit oxidation. Total peroxides, endogenous peroxidase activity, and antibodies against oxidized LDL (oLAb) were used as serum oxidative stress biomarkers. Post-operative increase in oxidative stress was associated with the consumption of antioxidants and a simultaneous onset of AF. This was confirmed through an increased peroxide level and a decreased oLAb titer in control and n-3 PUFAs groups, indicating the binding of antibodies to oxidative modified epitopes. In both subgroups that were supplemented with vitamins, total peroxides decreased, and the maintenance of a constant IgG antibody titer was facilitated. However, treatment with vitamins or n-3 PUFAs was inefficient with respect to AF onset and its duration. We conclude that the administration of vitamins attenuates post-operative oxidative stress in the course of CABG surgery.


Assuntos
Antioxidantes/farmacologia , Fibrilação Atrial/prevenção & controle , Biomarcadores/sangue , Ponte de Artéria Coronária/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Anticorpos/sangue , Antioxidantes/uso terapêutico , Ácido Ascórbico/farmacologia , Fibrilação Atrial/etiologia , Ácidos Graxos Ômega-3/farmacologia , Fluorescência , Humanos , Lipoproteínas LDL/imunologia , Oxirredução/efeitos dos fármacos , Peroxidase/metabolismo , Peróxidos/sangue , alfa-Tocoferol/farmacologia
2.
Nutrients ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398879

RESUMO

A central role for vitamin D (VD) in immune modulation has recently been recognized linking VD insufficiency to autoimmune disorders that commonly exhibit sex-associated differences. Similar to other autoimmune diseases, there is a higher incidence of multiple sclerosis (MS) in women, but a poorer prognosis in men, often characterized by a more rapid progression. Although sex hormones are most likely involved, this phenomenon is still poorly understood. Oxidative stress, modulated by VD serum levels as well as sex hormones, may act as a contributing factor to demyelination and axonal damage in both MS and the corresponding preclinical models. In this study, we analyzed sex-associated differences and VD effects utilizing an animal model that recapitulates histopathological features of the progressive MS phase (PMS). In contrast to relapsing-remitting MS (RRMS), PMS has been poorly investigated in this context. Male (n = 50) and female (n = 46) Dark Agouti rats received either VD (400 IU per week; VD+) or standard rodent food without extra VD (VD-) from weaning onwards. Myelination, microglial activation, apoptotic cell death and neuronal viability were assessed using immunohistochemical markers in brain tissue. Additionally, we also used two different histological markers against oxidized lipids along with colorimetric methods to measure protective polyphenols (PP) and total antioxidative capacity (TAC) in serum. Neurofilament light chain serum levels (sNfL) were analyzed using single-molecule array (SIMOA) analysis. We found significant differences between female and male animals. Female rats exhibited a better TAC and higher amounts of PP. Additionally, females showed higher myelin preservation, lower microglial activation and better neuronal survival while showing more apoptotic cells than male rats. We even found a delay in reaching the peak of the disease in females. Overall, both sexes benefitted from VD supplementation, represented by significantly less cortical, neuroaxonal and oxidative damage. Unexpectedly, male rats had an even higher overall benefit, most likely due to differences in oxidative capacity and defense systems.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Feminino , Masculino , Ratos , Animais , Caracteres Sexuais , Vitamina D , Vitaminas , Suplementos Nutricionais , Modelos Animais , Hormônios Esteroides Gonadais
3.
Subcell Biochem ; 56: 131-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22116698

RESUMO

A great part of the population appears to have insufficient folate intake, especially subgroups with higher demand, as determined through more sensitive methods and parameters currently in use. As the role of folate deficiency in congenital defects, e.g. in cardiovascular and neurodegenerative diseases, and in carcinogenesis has become better understood, folate has been recognized as having great potential to prevent these many disorders through folate supplementation or fortification for the general population. Folates are essential cofactors in the transfer and utilization of one-carbon groups in the process of DNA-biosynthesis with implications for genomic repair and stability. Folate acts indirectly to lower homocysteine levels and insures optimal functioning of the methylation cycle. Homocysteine was shown to be an independent risk factor for neurodegenerative and cardiovascular disease, which includes peripheral vascular disease, coronary artery disease, cerebrovascular disease and venous thrombosis. In fact, it was long believed that the beneficial effects of folate on vascular function and disease are related directly to the mechanism of homocysteine-diminution. Recent investigations have, however, demonstrated beneficial effects of folates unrelated to homocysteine-diminution, suggesting independent properties. One such mechanism could be free radical scavenging and antioxidant activity, as it is now recognized that free radicals play an important role in the oxidative stress leading to many diseases. It was found that folic acid and, in particular, its reduced derivates act both directly and indirectly to produce antioxidant effects. Folates interact with the endothelial enzyme NO synthase (eNOS) and, exert effects on the cofactor bioavailability of NO and thus, on peroxynitrite formation. Folate metabolism provides an interesting example of gene-environmental interaction.


Assuntos
Antioxidantes/farmacologia , Ácido Fólico/análogos & derivados , Ácido Fólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Homocistinúria/metabolismo , Humanos , Hiper-Homocisteinemia/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/fisiologia , Oxirredução
4.
Viruses ; 15(6)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376671

RESUMO

There is little doubt that final victories over pandemics, such as COVID-19, are attributed to herd immunity, either through post-disease convalescence or active immunization of a high percentage of the world's population with vaccines, which demonstrate protection from infection and transmission and are available in large quantities at reasonable prices. However, it is assumable that humans with immune defects or immune suppression, e.g., as a consequence of allograft transplantation, cannot be immunized actively nor produce sufficient immune responses to prevent SARS-CoV-2 infections. These subjects desperately need other strategies, such as sophisticated protection measures and passive immunization. Hypertonic salt solutions attack vulnerable core areas of viruses; i.e., salt denatures surface proteins and thus prohibits virus penetration of somatic cells. It has to be ensured that somatic proteins are not affected by denaturation regarding this unspecific virus protection. Impregnating filtering facepieces with hypertonic salt solutions is a straightforward way to inactivate viruses and other potential pathogens. As a result of the contact of salt crystals on the filtering facepiece, these pathogens become denatured and inactivated almost quantitatively. Such a strategy could be easily applied to fight against the COVID-19 pandemic and other ones that may occur in the future. Another possible tool to fight the COVID-19 pandemic is passive immunization with antibodies against SARS-CoV-2, preferably from human origin. Such antibodies can be harvested from human patients' sera who have successfully survived their SARS-CoV-2 infection. The disadvantage of a rapid decrease in the immunoglobulin titer after the infection ends can be overcome by immortalizing antibody-producing B cells via fusion with, e.g., mouse myeloma cells. The resulting monoclonal antibodies are then of human origin and available in, at least theoretically, unlimited amounts. Finally, dry blood spots are a valuable tool for surveilling a population's immunity. The add-on strategies were selected as examples for immediate, medium and long-term assistance and therefore did not raise any claim to completeness.


Assuntos
COVID-19 , Animais , Camundongos , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes
5.
Nutrients ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571246

RESUMO

Vitamin D (VD) is the most discussed antioxidant supplement for multiple sclerosis (MS) patients and many studies suggest correlations between a low VD serum level and onset and progression of the disease. While many studies in animals as well as clinical studies focused on the role of VD in the relapsing-remitting MS, knowledge is rather sparse for the progressive phase of the disease and the development of cortical pathology. In this study, we used our established rat model of cortical inflammatory demyelination, resembling features seen in late progressive MS, to address the question about whether VD could have positive effects on reducing cortical pathology, oxidative stress, and neurofilament light chain (NfL) serum levels. For this purpose, we used male Dark Agouti (DA) rats, with one group being supplemented with VD (400 IE per week; VD+) from the weaning on at age three weeks; the other group received standard rodent food. The rat brains were assessed using immunohistochemical markers against demyelination, microglial activation, apoptosis, neurons, neurofilament, and reactive astrocytes. To evaluate the effect of VD on oxidative stress and the antioxidant capacity, we used two different oxidized lipid markers (anti- Cu++ and HOCl oxidized LDL antibodies) along with colorimetric methods for protective polyphenols (PP) and total antioxidative capacity (TAC). NfL serum levels of VD+ and VD- animals were analyzed by fourth generation single-molecule array (SIMOA) analysis. We found significant differences between the VD+ and VD- animals both in histopathology as well as in all serum markers. Myelin loss and microglial activation is lower in VD+ animals and the number of apoptotic cells is significantly reduced with a higher neuronal survival. VD+ animals show significantly lower NfL serum levels, a higher TAC, and more PP. Additionally, there is a significant reduction of oxidized lipid markers in animals under VD supplementation. Our data thus show a positive effect of VD on cellular features of cortical pathology in our animal model, presumably due to protection against reactive oxygen species. In this study, VD enhanced remyelination and prevented neuroaxonal and oxidative damage, such as demyelination and neurodegeneration. However, more studies on VD dose relations are required to establish an optimal response while avoiding overdosing.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Masculino , Ratos , Animais , Vitamina D , Antioxidantes/farmacologia , Esclerose Múltipla/tratamento farmacológico , Vitaminas/farmacologia , Vitaminas/uso terapêutico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Modelos Animais
6.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631325

RESUMO

Metformin is the most commonly prescribed glucose-lowering drug for the treatment of type 2 diabetes. The aim of this study was to investigate whether metformin is capable of impeding the oxidation of LDL, a crucial step in the development of endothelial dysfunction and atherosclerosis. LDL was oxidized by addition of CuCl2 in the presence of increasing concentrations of metformin. The extent of LDL oxidation was assessed by measuring lipid hydroperoxide and malondialdehyde concentrations, relative electrophoretic mobilities, and oxidation-specific immune epitopes. Cytotoxicity of oxLDL in the vascular endothelial cell line EA.hy926 was assessed using the alamarBlue viability test. Quantum chemical calculations were performed to determine free energies of reactions between metformin and radicals typical for lipid oxidation. Metformin concentration-dependently impeded the formation of lipid hydroperoxides, malondialdehyde, and oxidation-specific immune epitopes when oxidation of LDL was initiated by addition of Cu2+. The cytotoxicity of oxLDL was reduced when it was obtained under increasing concentrations of metformin. The quantum chemical calculations revealed that only the reaction of metformin with hydroxyl radicals is exergonic, whereas the reactions with hydroperoxyl radicals or superoxide radical anions are endergonic. Metformin, beside its glucose-lowering effect, might be a suitable agent to impede the development of atherosclerosis and associated CVD. This is due to its capability to impede LDL oxidation, most likely by scavenging hydroxyl radicals.

7.
Aging Male ; 15(3): 159-65, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22468695

RESUMO

Oxidative stress is a risk factor for chronic diseases and was previously shown to be independently associated with obesity. The authors investigated the relationship between body mass index (BMI), age and oxidative stress on 2190 subjects undergoing a health care examination. Total antioxidant status (TAS), total peroxides (TOC) and autoantibodies against oxidized LDL (oLAb) were used as oxidative stress biomarkers in addition to serum lipoproteins, bilirubin and uric acid. Gender-specific differences were observed for age, BMI, serum concentrations of bilirubin, low-density lipoprotein (LDL), uric acid and TAS, all of which were higher in males (p < 0.001), while high-density lipoprotein (HDL), HDL/LDL ratio and TOC were higher in females (p < 0.001). Total cholesterol (p < 0.05) and LDL were increased (p < 0.05), while HDL was decreased (p < 0.05) in overweight and obese subjects. This was accompanied by increased uric acid and TAS concentrations. Lowest oLAb titers were detected in obese subjects. In extremely obese subjects, increased TOC and decreased TAS were observed in spite of high uric acid levels. These results demonstrate that oxidative stress increases with increasing BMI and age, as a sequel to an impaired antioxidant status, the consumption of oLAbs, an increase of peroxides and uric acid and a disadvantaged lipid profile.


Assuntos
Envelhecimento/fisiologia , Índice de Massa Corporal , Estresse Oxidativo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos , Bilirrubina/sangue , Colesterol/sangue , Humanos , Lipoproteínas LDL , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Ácido Úrico/sangue , Adulto Jovem
9.
Antioxidants (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453318

RESUMO

Physical workload adversely impacts inflammation, oxidative stress and mood in heavy workers. We compared these risk parameters between metalworkers (n = 20) and office workers (n = 30), including gender differences. Blood samples were analyzed with thirty parameters to overview endocrinology, inflammation, and psychological and oxidative stress. Despite an adequate antioxidative supply, oxidative stress occurred in metalworkers, as indicated by significantly increased peroxide and homocysteine (Hcy) levels. Moreover, increased concentrations were observed in this group regarding psychological stress and diet-related parameters. Sex-specific differences were determined for physical dimensions, dehydroepiandrosterone sulfate (DHEAS), Hcy, uric acid, triglycerides, osmolality, anti-Mullerian hormone (AMH) and testosterone. Age-associated differences were observed for DHEAS, glycosylated hemoglobin, adrenaline, AMH and testosterone. In male office workers, the body mass index was associated with increased LDL-HDL, cholesterol-HDL and homeostatic model assessment of insulin resistance (HOMA-IR). In conclusion, these results indicate increased oxidative stress and psychological stress in heavy workers independently of adequate antioxidant sustenance. The sedentary occupation of office workers, in turn, favored diseases of affluence. This might be particularly relevant for long-term occupied persons and older workers due to a hormonal shift coming along, given the risk for oxidative stress-related diseases such as cardiovascular disease, particularly in the case of males, based on their lifestyle habits.

10.
Biomolecules ; 12(10)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291697

RESUMO

Thorough understanding of metabolic changes, including lipidome alteration, associated with the development of COVID-19 appears to be crucial, as new types of coronaviruses are still reported. In this study, we analyzed the differences in the plasma phospholipid profiles of the deceased COVID-19 patients, those who recovered and healthy people. Due to identified abnormalities in plasma phospholipid profiles, deceased patients were further divided into two subgroups (D1 and D2). Increased levels of phosphatidylethanolamines (PE), phosphatidylcholines (PC) and phosphatidylserines (PS) were found in the plasma of recovered patients and the majority of deceased patients (first subgroup D1) compared to the control group. However, abundances of all relevant PE, PC and PS species decreased dramatically in the plasma of the second subgroup (D2) of five deceased patients. These patients also had significantly decreased plasma COX-2 activity when compared to the control, in contrast to unchanged and increased COX-2 activity in the plasma of the other deceased patients and recovered patients, respectively. Moreover, these five deceased patients were characterized by abnormally low CRP levels and tremendous increase in LDH levels, which may be the result of other pathophysiological disorders, including disorders of the immune system, liver damage and haemolytic anemia. In addition, an observed trend to decrease the autoantibodies against oxidative modifications of low-density lipoprotein (oLAb) titer in all, especially in deceased patients, indicate systemic oxidative stress and altered immune system that may have prognostic value in COVID-19.


Assuntos
COVID-19 , Fosfolipídeos , Humanos , Fosfolipídeos/metabolismo , Fosfatidiletanolaminas/metabolismo , Lipidômica , Fosfatidilserinas/metabolismo , Ciclo-Oxigenase 2 , Fosfatidilcolinas , Lipoproteínas LDL , Autoanticorpos
11.
Antioxidants (Basel) ; 11(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35624706

RESUMO

Oxidative stress describes an imbalance of reactive oxygen species (ROS) and antioxidative defence systems. Recently, the consequences of oxidative stress have become a central field of research and have been linked to the genesis of multiple psychiatric diseases. Some oxidative stress parameters have not been investigated before in anorexia nervosa (AN) patients, including the gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) and polyphenols (PPm). In this cross-sectional pilot study, we evaluated these markers together with total peroxides (TOC), antioxidative capacity (TAC), endogenous peroxidase activity (EPA) and antibodies against oxidized LDL (oLAb) in serum samples of 20 patients with AN compared to 20 healthy controls. The antioxidative capacity was significantly decreased in AN patients, with a mean TAC of 1.57 mmol/L (SD: ±0.62); t (34) = -2.181, p = 0.036) compared to HC (mean = 1.91 mmol/L (SD: ±0.56), while the other investigated parameters were not significantly different between the two groups. In AN patients, TAC correlated with EPA (rsp = -0.630, p = 0.009). This study suggests that there is an antioxidative deficiency in AN patients. In this respect, there is a demand for interventional studies to determine whether antioxidants can be used as add-on therapy in the treatment of AN.

12.
Biomedicines ; 10(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327451

RESUMO

Nitric oxide donors (NO-donors) have been shown to have therapeutic potential (e.g., ischemia/reperfusion injury). However, due to their release rate/antiplatelet properties, they may cause bleeding in patients. We therefore studied the antiplatelet effects of the two different NO-donors, i.e., S-NO-Human Serum Albumin (S-NO-HSA) and Diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA-NONOate) in whole blood (WB) samples. WB samples were spiked with S-NO-HSA or DEA-NONOate (100 µmol/L or 200 µmol/L), and the NO release rate (nitrite/nitrate levels via HPLC) and antiplatelet efficacy (impedance aggregometry, platelet function analyzer, Cone-and-platelet analyzer, thrombelastometry) were assessed. S-NO-HSA had a significantly lower NO release compared to equimolar concentrations of DEA-NONOate. Virtually no antiplatelet action of S-NO-HSA was observed in WB samples, whereas DEA-NONOate significantly attenuated platelet function in WB. Impedance aggregometry measurements revealed that Amplitudes (slope: -0.04022 ± 0.01045 ohm/µmol/L, p = 0.008) and Lag times (slope: 0.6389 ± 0.2075 s/µmol/L, p = 0.0051) were dose-dependently decreased and prolonged by DEA-NONOate. Closure times (Cone-and-platelet analyzer) were dose-dependently prolonged (slope: 0.3738 ± 0.1403 s/µmol/L, p = 0.0174 with collagen/ADP coating; slope: -0.5340 ± 0.1473 s/µmol/L, p = 0.0019 with collagen/epinephrine coating) by DEA-NONOate. These results in WB further support the pharmacological potential of S-NO-HSA as an NO-donor due to its ability to presumably prevent bleeding events even at high concentrations up to 200 µmol/L.

13.
Antioxidants (Basel) ; 11(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35883769

RESUMO

Dietary polyphenols, which are present in Aronia melanocarpa, have been associated with various beneficial effects on human health including antioxidant, antiviral, and anti-inflammatory activities. We aimed to investigate the immunomodulatory effects of aronia juice polyphenols in a randomized placebo-controlled human intervention study and cell culture experiments. A total of 40 females were asked to consume either 200 mL of aronia juice or a placebo drink for six weeks and were investigated again after a washout period of another six weeks. We observed that only half of the participants tolerated the aronia juice well (Vt) and the other half reported complaints (Vc). The placebo (P) was generally tolerated with one exception (p = 0.003). Plasma polyphenol levels increased significantly in Vt after the intervention (p = 0.024) but did neither in P nor in Vc. Regulatory T cell (Treg) frequencies remained constant in Vt and P during the intervention, whereas Tregs decreased in Vc (p = 0.018). In cell culture, inhibiting effects of ferulic acid (p = 0.0005) and catechin (p = 0.0393) on the differentiation of Tregs were observed as well as reduced activation of CD4-T cells in ferulic acid (p = 0.0072) and aronia juice (p = 0.0163) treated cells. Interestingly, a CD4+CD25-FoxP3+ cell population emerged in vitro in response to aronia juice, but not when testing individual polyphenols. In conclusion, our data strengthen possible individual hormetic effects, the importance of the food matrix for bioactivity, and the need for further investigations on possible impacts of specific physiological features such as the gut microbiota in the context of personalized nutrition.

14.
Biomedicines ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359289

RESUMO

The incidence of thrombosis increases with aging. We investigated the coagulatory/haemostatic system across the ages and tested the hypothesis that older persons have a hypercoagulable state compared to younger persons at rest, and that standing up (orthostasis) leads to greater changes in coagulation in older persons. In total, 22 older and 20 young participants performed a 6 min sit-to-stand test (orthostatic challenge). Blood was collected prior to and at the end of standing and haemostatic profiling was performed via thrombelastometry (TEM), calibrated automated thrombogram (CAT) and standard coagulation assays. At baseline, three CAT-derived values indicated enhanced capability to generate thrombin in older participants. However, other measured parameters did not suggest a hypercoagulable state in older participants: prolonged TEM-derived coagulation times (295 vs. 209 s, medians, p = 0.0025) and prothrombin times (103 vs. 114%, medians, p = 0.0087), as well as lower TF levels (440 vs. 672 pg/mL, medians, p = 0.0245) and higher t-PA levels (7.3 vs. 3.8 ng/mL, medians, p = 0.0002), indicative of enhanced fibrinolytic capability, were seen. Younger participants were more sensitive to the orthostatic challenge: CAT-derived endogenous thrombin potentials (ETPs) were only increased in the young (1337 to 1350 nM.min, medians, p = 0.0264) and shortening of PTs was significantly higher in the young vs. older participants (p = 0.0242). Our data suggest that the increased thrombosis propensity in older persons is not primarily attributable to a hyperactive coagulation cascade but may be due to other pathologies associated with aging.

15.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680051

RESUMO

People with diabetes have an increased risk of experiencing adverse COVID-19 outcomes. COVID-19 vaccination is, therefore, highly recommended. However, people with diabetes have an inherently elevated risk of thrombotic events and the impact of the vaccination on the coagulation system in this patient population remains to be elucidated. The aim of this study was to investigate the impact of COVID-19 vaccination on the haemostatic system in people with type 1 or type 2 diabetes. We evaluated the effects of COVID-19 vaccination (BioNTech Pfizer, Moderna, AstraZeneca) on standard coagulation parameters, whole blood coagulation (Thrombelastometry), platelet function (impedance aggregation), and thrombin generation (calibrated automated thrombography) in people with type 1 diabetes mellitus (n = 41) and type 2 diabetes mellitus (n = 37). Blood sampling points were prior to vaccination and two weeks after the respective vaccination. Thrombelastometry measurements indicated moderately increased clot formation post-vaccination in people with type 1, as well as with type 2, diabetes: "Clot formation times" were significantly shorter, and both "maximum clot firmness" and "alpha angles" were significantly higher, as compared to the respective pre-vaccination values. Therefore, TEM parameters were not altered after vaccination in patients receiving ASA. Moreover, platelet aggregation was enhanced in people with type 1 diabetes, and plasma levels of D-Dimer were increased in people with type 2 diabetes, following COVID-19 vaccination. All other standard coagulation parameters, as well as thrombin generation, were not affected by the vaccination. The coagulation responses of people with diabetes to COVID-19 vaccination were only subclinical and comparable to those observed in healthy individuals. Our findings suggest that people with diabetes do not face an increased activation of the coagulation post-vaccination.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hemostáticos , Humanos , Vacinas contra COVID-19/efeitos adversos , Trombina , COVID-19/prevenção & controle , Vacinação
16.
Artigo em Inglês | MEDLINE | ID: mdl-34299856

RESUMO

Recently, as is evident with the COVID-19 pandemic, virus-containing aerosols can rapidly spread worldwide. As a consequence, filtering facepieces (FFP) are essential tools to protect against airborne viral particles. Incorrect donning and doffing of masks and a lack of hand-hygiene cause contagion by the wearers' own hands. This study aimed to prove that hypertonic saline effectively reduces the infectious viral load on treated masks. Therefore, a hypertonic salt solution´s protective effect on surgical masks was investigated, specifically analyzing the infectivity of aerosolized Alphacoronavirus 1 in pigs (Transmissible Gastroenteritis Virus (TGEV)). Uncoated and hypertonic salt pre-coated FFPs were sprayed with TGEV. After drying, a defined part of the mask was rinsed with the medium, and the eluent was used for the infection of a porcine testicular cell line. Additionally, airborne microorganisms´ long-term infectivity of sodium-chloride in phosphate-buffered saline comprising 5% saccharose was investigated. In the results from an initial Median Tissue Culture Infectious Dose, infection rate of TGEV was minimally reduced by untreated FFP. In contrast, this could be reduced by a factor of 104 if FFPs were treated with hypertonic salt solutions. Airborne pathogens did not contaminate the growth medium if salt concentrations exceeded 5%. We conclude that hypertonic saline is a vital tool for anti-virus protection, exponentially improving the impact of FFPs.


Assuntos
COVID-19 , Higiene das Mãos , Animais , Humanos , Máscaras , Pandemias , SARS-CoV-2 , Suínos
17.
Biomedicines ; 9(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673728

RESUMO

BACKGROUND: Obesity increases the risk of coronary heart disease, partly due to its strong association with atherogenic dyslipidemia, characterized by high triglycerides and low high-density lipoprotein (HDL) cholesterol levels. Functional impairment of HDL may contribute to the increased cardiovascular mortality, but the effect of obesity on composition, structure, and function of HDL is not well understood. Design and Methods: We determined HDL composition, HDL subclass distribution, parameters of HDL function, and activities of most important enzymes involved in lipoprotein remodeling, including lecithin-cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) in relatively young normal weight (n = 26), overweight (n = 22), and obese (n = 20) women. RESULTS: Obesity (body mass index (BMI) ≥ 30) was associated with noticeable changes in LCAT and CETP activities and altered HDL composition, such as decreased apolipoprotein A-I, cholesterol, and phospholipid content, while pro-inflammatory HDL serum amyloid a content was increased. We observed a marked shift towards smaller HDL subclasses in obesity linked to lower anti-oxidative capacity of serum. LCAT activity, HDL subclass distribution, and HDL-cholesterol were associated with soluble leptin receptor, adiponectin, and liver enzyme activities. Of note, most of these alterations were only seen in obese women but not in overweight women. CONCLUSIONS: Obesity markedly affects HDL metabolism, composition, and subclass distribution linked to changes in liver and adipose tissue. HDL dysfunction may contribute to increased cardiovascular risk in obesity.

18.
Antioxidants (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572973

RESUMO

Major findings of the pilot study involving 21 critically ill patients during the week after admission to the critical care unit specialized for COVID-19 are presented. Fourteen patients have recovered, while seven passed away. There were no differences between them in respect to clinical or laboratory parameters monitored. However, protein adducts of the lipid peroxidation product 4-hydroxynonenal (HNE) were higher in the plasma of the deceased patients, while total antioxidant capacity was below the detection limit for the majority of sera samples in both groups. Moreover, levels of the HNE-protein adducts were constant in the plasma of the deceased patients, while in survivors, they have shown prominent and dynamic variations, suggesting that survivors had active oxidative stress response mechanisms reacting to COVID-19 aggression, which were not efficient in patients who died. Immunohistochemistry revealed the abundant presence of HNE-protein adducts in the lungs of deceased patients indicating that HNE is associated with the lethal outcome. It seems that HNE was spreading from the blood vessels more than being a consequence of pneumonia. Due to the limitations of the relatively small number of patients involved in this study, further research on HNE and antioxidants is needed. This might allow a better understanding of COVID-19 and options for utilizing antioxidants by personalized, integrative biomedicine approach to prevent the onset of HNE-mediated vitious circle of lipid peroxidation in patients with aggressive inflammatory diseases.

19.
Prev Med Rep ; 20: 101270, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33282639

RESUMO

The filtering facepiece operates through filtration without the ability to kill the viruses. If the filtration might be combined with antiviral agents simultaneously in the masks, this would be much more efficient during the use of these masks and against cross-infection after being discarded. For centuries, sodium chloride (NaCl) contributes to inhibiting pathogens on various occasions. If aerosol with infectious agents reaches the filtering face-piecé surface of the filtering face-piece, coated with hypertonic saline, they become attracted by hygroscopic salt crystals. Proteins and nucleic acids lose their structural integrity and become inactivated concerning their infectious properties. We provide further evidence for cell growth inhibition with hypertonic saline in yeast cells comprising a defending cell wall. Proliferation was inhibited in a concentration-dependent manner, i.e., above 50 g/L, yeast cell proliferation was completely blocked. At a NaCl concentration of 100 g/L, even decomposition of the original inoculated organisms was observed. Therefore, we conclude that hypertonic saline- coated filtering facepiece might strongly reduce the numbers of infectious particles on their surfaces and thus protect mask carriers efficiently from infections.

20.
MMW Fortschr Med ; 162(Suppl 4): 17-27, 2020 03.
Artigo em Alemão | MEDLINE | ID: mdl-32189314

RESUMO

BACKGROUND: Owing to the widespread use of vitamin supplements to prevent and compensate for deficiencies, the equivalence of natural versus synthetic vitamins with respect to their bioavailability and metabolic influence is discussed controversially. METHOD: Thirty healthy female (n=22) and male participants (n=8) were investigated in a randomized, double-blind, cross-over study over a supplementation period of 6 weeks for each condition. The participants received a daily dose of a complex of the 8 natural B vitamins (group N), determined by the natural composition of quinoa seedlings, resp. synthetic B vitamins (group S), both corresponding to about 2.5 times the Recommended Dietary Allowance (RDA) of the national nutrition board. The primary criterion under investigation was changes in the blood levels of the individual B vitamins. Secondary criteria were the influence of both B complexes on homocysteine, antioxidant status, polyphenols, peroxide loading and peroxidase activity. RESULTS: Compared to baseline values, serum levels of all B vitamins measured increased: Vitamins B1 (N +23%; S +27%), B2 (N +14%; S +13%), B6 (N +101%; S +101%), B9 (N +86%; S +153%) and B12 (N +16%) were elevated at the end of the first supplementation period (p < 0.05), while serum levels of vitamins B1, B9 and B12 remained elevated compared to baseline even after the 2-week washout phase. During the second supplementation period, the vitamin concentrations in group N, with the exception of vitamin B1, could be increased once again (p < 0.05). In contrast, in group S only for vitamins B2 and B12 substantial increases (p < 0.05) were found. The influence of B vitamins on metabolic parameters such as homocysteine and polyphenols, which were markedly reduced, was also clearly measurable; however, total antioxidant capacity and peroxidase activity increased. The peroxide concentration remained almost unchanged in both groups. CONCLUSION: This clinical pilot study showed comparable bioavailability for both natural and synthetic B vitamins, with a 2.5-fold concentration of the RDA. Both vitamin B preparations showed a clear influence on metabolic parameters, whereas that of the natural B vitamins tended to have a slightly stronger effect than the synthetic analogues.


Assuntos
Suplementos Nutricionais , Complexo Vitamínico B , Vitaminas , Disponibilidade Biológica , Estudos Cross-Over , Método Duplo-Cego , Feminino , Ácido Fólico , Homocisteína , Humanos , Masculino , Projetos Piloto , Vitamina B 12 , Complexo Vitamínico B/farmacocinética , Vitaminas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA