Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nature ; 617(7960): 369-376, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100909

RESUMO

Communication between neurons and glia has an important role in establishing and maintaining higher-order brain function1. Astrocytes are endowed with complex morphologies, placing their peripheral processes in close proximity to neuronal synapses and directly contributing to their regulation of brain circuits2-4. Recent studies have shown that excitatory neuronal activity promotes oligodendrocyte differentiation5-7; whether inhibitory neurotransmission regulates astrocyte morphogenesis during development is unclear. Here we show that inhibitory neuron activity is necessary and sufficient for astrocyte morphogenesis. We found that input from inhibitory neurons functions through astrocytic GABAB receptor (GABABR) and that its deletion in astrocytes results in a loss of morphological complexity across a host of brain regions and disruption of circuit function. Expression of GABABR in developing astrocytes is regulated in a region-specific manner by SOX9 or NFIA and deletion of these transcription factors results in region-specific defects in astrocyte morphogenesis, which is conferred by interactions with transcription factors exhibiting region-restricted patterns of expression. Together, our studies identify input from inhibitory neurons and astrocytic GABABR as universal regulators of morphogenesis, while further revealing a combinatorial code of region-specific transcriptional dependencies for astrocyte development that is intertwined with activity-dependent processes.


Assuntos
Astrócitos , Forma Celular , Inibição Neural , Neurônios , Receptores de GABA-B , Astrócitos/citologia , Astrócitos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Receptores de GABA-B/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição NFI/metabolismo , Regulação da Expressão Gênica
2.
Nature ; 619(7971): 844-850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380778

RESUMO

The tumour microenvironment plays an essential role in malignancy, and neurons have emerged as a key component of the tumour microenvironment that promotes tumourigenesis across a host of cancers1,2. Recent studies on glioblastoma (GBM) highlight bidirectional signalling between tumours and neurons that propagates a vicious cycle of proliferation, synaptic integration and brain hyperactivity3-8; however, the identity of neuronal subtypes and tumour subpopulations driving this phenomenon is incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumours promote progression and widespread infiltration. Using this platform to examine GBM infiltration, we identified an activity-dependent infiltrating population present at the leading edge of mouse and human tumours that is enriched for axon guidance genes. High-throughput, in vivo screening of these genes identified SEMA4F as a key regulator of tumourigenesis and activity-dependent progression. Furthermore, SEMA4F promotes the activity-dependent infiltrating population and propagates bidirectional signalling with neurons by remodelling tumour-adjacent synapses towards brain network hyperactivity. Collectively our studies demonstrate that subsets of neurons in locations remote to primary GBM promote malignant progression, and also show new mechanisms of glioma progression that are regulated by neuronal activity.


Assuntos
Neoplasias Encefálicas , Carcinogênese , Glioma , Neurônios , Microambiente Tumoral , Humanos , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Glioma/patologia , Glioma/fisiopatologia , Neurônios/patologia , Proliferação de Células , Sinapses , Progressão da Doença , Animais , Camundongos , Axônios , Corpo Caloso/patologia , Vias Neurais
3.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256095

RESUMO

Astrocytes are the most abundant glial cell type in the central nervous system, and they play a crucial role in normal brain function. While gliogenesis and glial differentiation occur during perinatal cerebellar development, the processes that occur during early postnatal development remain obscure. In this study, we conducted transcriptomic profiling of postnatal cerebellar astrocytes at postnatal days 1, 7, 14, and 28 (P1, P7, P14, and P28), identifying temporal-specific gene signatures at each specific time point. Comparing these profiles with region-specific astrocyte differentially expressed genes (DEGs) published for the cortex, hippocampus, and olfactory bulb revealed cerebellar-specific gene signature across these developmental timepoints. Moreover, we conducted a comparative analysis of cerebellar astrocyte gene signatures with gene lists from pediatric brain tumors of cerebellar origin, including ependymoma and medulloblastoma. Notably, genes downregulated at P14, such as Kif11 and HMGB2, exhibited significant enrichment across all pediatric brain tumor groups, suggesting the importance of astrocytic gene repression during cerebellar development to these tumor subtypes. Collectively, our studies describe gene expression patterns during cerebellar astrocyte development, with potential implications for pediatric tumors originating in the cerebellum.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Criança , Feminino , Gravidez , Humanos , Astrócitos , Perfilação da Expressão Gênica , Encéfalo , Transcriptoma , Cerebelo
4.
J Neurosci ; 42(4): 567-580, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34872929

RESUMO

Astrocytes are the most abundant glial cell in the brain and perform a wide range of tasks that support neuronal function and circuit activities. There is emerging evidence that astrocytes exhibit molecular and cellular heterogeneity; however, whether distinct subpopulations perform these diverse roles remains poorly defined. Here we show that the Lunatic Fringe-GFP (Lfng-GFP) bacteria artificial chromosome mouse line from both sexes specifically labels astrocyte populations within lamina III and IV of the dorsal spinal cord. Transcriptional profiling of Lfng-GFP+ astrocytes revealed unique molecular profiles, featuring an enriched expression of Notch- and Wnt- pathway components. Leveraging CRE-DOG viral tools, we ablated Lfng-GFP+ astrocytes, which decreased neuronal activity in lamina III and IV and impaired mechanosensation associated with light touch. Together, our findings identify Lfng-GFP+ astrocytes as a unique subpopulation that occupies a distinct anatomic location in the spinal cord and directly contributes to neuronal function and sensory responses.SIGNIFICANCE STATEMENT Astrocytes are the most abundant glial cell in the CNS, and their interactions with neurons are essential for brain function. However, understanding the functional diversity of astrocytes has been hindered because of the lack of reporters that mark subpopulations and genetic tools for accessing them. We discovered that the Lfng-GFP reporter mouse labels a laminae-specific subpopulation of astrocytes in the dorsal spinal cord and that ablation of these astrocytes reduces glutamatergic synapses. Further analysis revealed that these astrocytes have a role in maintaining sensory-processing circuity related to light touch.


Assuntos
Astrócitos/química , Astrócitos/fisiologia , Glicosiltransferases/análise , Proteínas de Fluorescência Verde/análise , Percepção/fisiologia , Animais , Feminino , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medula Espinal/química , Medula Espinal/fisiologia
5.
EMBO Rep ; 22(12): e53200, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633730

RESUMO

Astrocytes display extraordinary morphological complexity that is essential to support brain circuit development and function. Formin proteins are key regulators of the cytoskeleton; however, their role in astrocyte morphogenesis across diverse brain regions and neural circuits is unknown. Here, we show that loss of the formin protein Daam2 in astrocytes increases morphological complexity in the cortex and olfactory bulb, but elicits opposing effects on astrocytic calcium dynamics. These differential physiological effects result in increased excitatory synaptic activity in the cortex and increased inhibitory synaptic activity in the olfactory bulb, leading to altered olfactory behaviors. Proteomic profiling and immunoprecipitation experiments identify Slc4a4 as a binding partner of Daam2 in the cortex, and combined deletion of Daam2 and Slc4a4 restores the morphological alterations seen in Daam2 mutants. Our results reveal new mechanisms regulating astrocyte morphology and show that congruent changes in astrocyte morphology can differentially influence circuit function.


Assuntos
Astrócitos , Proteínas dos Microfilamentos/genética , Proteínas rho de Ligação ao GTP/genética , Forminas , Morfogênese , Bulbo Olfatório/metabolismo , Proteômica , Simportadores de Sódio-Bicarbonato
6.
J Neurosci ; 41(34): 7171-7181, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34253626

RESUMO

Mediator protein complex subunit 12 (Med12) is a core component of the basal transcriptional apparatus and plays a critical role in the development of many tissues. Mutations in Med12 are associated with X-linked intellectual disability syndromes and hearing loss; however, its role in nervous system function remains undefined. Here, we show that temporal conditional deletion of Med12 in astrocytes in the adult CNS results in region-specific alterations in astrocyte morphology. Surprisingly, behavioral studies revealed rapid hearing loss after adult deletion of Med12 that was confirmed by a complete abrogation of auditory brainstem responses. Cellular analysis of the cochlea revealed degeneration of the stria vascularis, in conjunction with disorganization of basal cells adjacent to the spiral ligament and downregulation of key cell adhesion proteins. Physiologic analysis revealed early changes in endocochlear potential, consistent with strial-specific defects. Together, our studies reveal that Med12 regulates auditory function in the adult by preserving the structural integrity of the stria vascularis.SIGNIFICANCE STATEMENT Mutations in Mediator protein complex subunit 12 (Med12) are associated with X-linked intellectual disability syndromes and hearing loss. Using temporal-conditional genetic approaches in CNS glia, we found that loss of Med12 results in severe hearing loss in adult animals through rapid degeneration of the stria vascularis. Our study describes the first animal model that recapitulates hearing loss identified in Med12-related disorders and provides a new system in which to examine the underlying cellular and molecular mechanisms of Med12 function in the adult nervous system.


Assuntos
Astrócitos/fisiologia , Perda Auditiva Neurossensorial/etiologia , Complexo Mediador/deficiência , Estria Vascular/patologia , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Moléculas de Adesão Celular/metabolismo , Condicionamento Clássico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Medo , Feminino , Reação de Congelamento Cataléptica , Técnicas de Inativação de Genes , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Masculino , Complexo Mediador/fisiologia , Camundongos , Especificidade de Órgãos , Emissões Otoacústicas Espontâneas , Distribuição Aleatória , Reflexo de Sobressalto
7.
Proc Natl Acad Sci U S A ; 115(19): 5004-5009, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29691318

RESUMO

Tonic inhibition in the brain is mediated through an activation of extrasynaptic GABAA receptors by the tonically released GABA, resulting in a persistent GABAergic inhibitory action. It is one of the key regulators for neuronal excitability, exerting a powerful action on excitation/inhibition balance. We have previously reported that astrocytic GABA, synthesized by monoamine oxidase B (MAOB), mediates tonic inhibition via GABA-permeable bestrophin 1 (Best1) channel in the cerebellum. However, the role of astrocytic GABA in regulating neuronal excitability, synaptic transmission, and cerebellar brain function has remained elusive. Here, we report that a reduction of tonic GABA release by genetic removal or pharmacological inhibition of Best1 or MAOB caused an enhanced neuronal excitability in cerebellar granule cells (GCs), synaptic transmission at the parallel fiber-Purkinje cell (PF-PC) synapses, and motor performance on the rotarod test, whereas an augmentation of tonic GABA release by astrocyte-specific overexpression of MAOB resulted in a reduced neuronal excitability, synaptic transmission, and motor performance. The bidirectional modulation of astrocytic GABA by genetic alteration of Best1 or MAOB was confirmed by immunostaining and in vivo microdialysis. These findings indicate that astrocytes are the key player in motor coordination through tonic GABA release by modulating neuronal excitability and could be a good therapeutic target for various movement and psychiatric disorders, which show a disturbed excitation/inhibition balance.


Assuntos
Astrócitos/metabolismo , Cerebelo/metabolismo , Desempenho Psicomotor/fisiologia , Células de Purkinje/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Astrócitos/citologia , Bestrofinas/genética , Bestrofinas/metabolismo , Cerebelo/citologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Células de Purkinje/citologia , Ácido gama-Aminobutírico/genética
8.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921461

RESUMO

Astrocytes play central roles in normal brain function and are critical components of synaptic networks that oversee behavioral outputs. Despite their close affiliation with neurons, how neuronal-derived signals influence astrocyte function at the gene expression level remains poorly characterized, largely due to difficulties associated with dissecting neuron- versus astrocyte-specific effects. Here, we use an in vitro system of stem cell-derived astrocytes to identify gene expression profiles in astrocytes that are influenced by neurons and regulate astrocyte development. Furthermore, we show that neurotransmitters and neuromodulators induce distinct transcriptomic and chromatin accessibility changes in astrocytes that are unique to each of these neuroactive compounds. These findings are highlighted by the observation that noradrenaline has a more profound effect on transcriptional profiles of astrocytes compared to glutamate, gamma-aminobutyric acid (GABA), acetylcholine, and serotonin. This is demonstrated through enhanced noradrenaline-induced transcriptomic and chromatin accessibility changes in vitro and through enhanced calcium signaling in vivo. Taken together, our study reveals distinct transcriptomic and chromatin architecture signatures in astrocytes in response to neuronal-derived neuroactive compounds. Since astrocyte function is affected in all neurological disorders, this study provides a new entry point for exploring genetic mechanisms of astrocyte-neuron communication that may be dysregulated in disease.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Transcriptoma/genética , Acetilcolina/genética , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Ácido Glutâmico/genética , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Norepinefrina/genética , Serotonina/genética , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/genética
9.
J Neurosci ; 39(50): 10081-10095, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31672788

RESUMO

Neurovascular coupling (NVC), the interaction between neural activity and vascular response, ensures normal brain function by maintaining brain homeostasis. We previously reported altered cerebrovascular responses during functional hyperemia in chronically stressed animals. However, the underlying neuronal-level changes associated with those hemodynamic changes remained unclear. Here, using in vivo and ex vivo experiments, we investigate the neuronal origins of altered NVC dynamics under chronic stress conditions in adult male mice. Stimulus-evoked hemodynamic and neural responses, especially beta and gamma-band local field potential activity, were significantly lower in chronically stressed animals, and the NVC relationship, itself, had changed. Further, using acute brain slices, we discovered that the underlying cause of this change was dysfunction of neuronal nitric oxide synthase (nNOS)-mediated vascular responses. Using FISH to check the mRNA expression of several GABAergic subtypes, we confirmed that only nNOS mRNA was significantly decreased in chronically stressed mice. Ultimately, chronic stress impairs NVC by diminishing nNOS-mediated vasodilation responses to local neural activity. Overall, these findings provide useful information in understanding NVC dynamics in the healthy brain. More importantly, this study reveals that impaired nNOS-mediated NVC function may be a contributory factor in the progression of stress-related diseases.SIGNIFICANCE STATEMENT The correlation between neuronal activity and cerebral vascular dynamics is defined as neurovascular coupling (NVC), which plays an important role for meeting the metabolic demands of the brain. However, the impact of chronic stress, which is a contributory factor of many cerebrovascular diseases, on NVC is poorly understood. We therefore investigated the effects of chronic stress on impaired neurovascular response to sensory stimulation and their underlying mechanisms. Multimodal approaches, from in vivo hemodynamic imaging and electrophysiology to ex vivo vascular imaging with pharmacological treatment, patch-clamp recording, FISH, and immunohistochemistry revealed that chronic stress-induced dysfunction of nNOS-expressing interneurons contributes to NVC impairment. These findings will provide useful information to understand the role of nNOS interneurons in NVC in normal and pathological conditions.


Assuntos
Circulação Cerebrovascular/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Acoplamento Neurovascular/fisiologia , Estresse Fisiológico/fisiologia , Potenciais de Ação/fisiologia , Animais , Encéfalo/fisiologia , Masculino , Camundongos , Óxido Nítrico Sintase Tipo I/metabolismo , Vasodilatação/fisiologia
10.
J Physiol ; 598(20): 4555-4572, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32706443

RESUMO

KEY POINTS: Neuronal activity causes astrocytic volume change via K+ uptake through TREK-1 containing two-pore domain potassium channels. The volume transient is terminated by Cl- efflux through the Ca2+ -activated anion channel BEST1. The source of the Ca2+ required to open BEST1 appears to be the stretch-activated TRPA1 channel. Intense neuronal activity is synaptically coupled with a physical change in astrocytes via volume transients. ABSTRACT: The brain volume changes dynamically and transiently upon intense neuronal activity through a tight regulation of ion concentrations and water movement across the plasma membrane of astrocytes. We have recently demonstrated that an intense neuronal activity and subsequent astrocytic AQP4-dependent volume transient are critical for synaptic plasticity and memory. We have also pharmacologically demonstrated a functional coupling between synaptic activity and the astrocytic volume transient. However, the precise molecular mechanisms of how intense neuronal activity and the astrocytic volume transient are coupled remain unclear. Here we utilized an intrinsic optical signal imaging technique combined with fluorescence imaging using ion sensitive dyes and molecular probes and electrophysiology to investigate the detailed molecular mechanisms in genetically modified mice. We report that a brief synaptic activity induced by a train stimulation (20 Hz, 1 s) causes a prolonged astrocytic volume transient (80 s) via K+ uptake through TREK-1 containing two-pore domain potassium (K2P) channels, but not Kir4.1 or NKCC1. This volume change is terminated by Cl- efflux through the Ca2+ -activated anion channel BEST1, but not the volume-regulated anion channel TTYH. The source of the Ca2+ required to open BEST1 appears to be the stretch-activated TRPA1 channel in astrocytes, but not IP3 R2. In summary, our study identifies several important astrocytic ion channels (AQP4, TREK-1, BEST1, TRPA1) as the key molecules leading to the neuronal activity-dependent volume transient in astrocytes. Our findings reveal new molecular and cellular mechanisms for the synaptic coupling of intense neuronal activity with a physical change in astrocytes via volume transients.


Assuntos
Astrócitos , Canais Iônicos , Animais , Astrócitos/metabolismo , Bestrofinas , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Potássio/metabolismo
11.
Glia ; 68(5): 1065-1080, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31833596

RESUMO

Tonic extrasynaptic GABAA receptor (GABAA R) activation is under the tight control of tonic GABA release from astrocytes to maintain the brain's excitation/inhibition (E/I) balance; any slight E/I balance disturbance can cause serious pathological conditions including epileptic seizures. However, the pathophysiological role of tonic GABA release from astrocytes has not been tested in epileptic seizures. Here, we report that pharmacological or genetic intervention of the GABA-permeable Bestrophin-1 (Best1) channel prevented the generation of tonic GABA inhibition, disinhibiting CA1 pyramidal neuronal firing and augmenting seizure susceptibility in kainic acid (KA)-induced epileptic mice. Astrocyte-specific Best1 over-expression in KA-injected Best1 knockout mice fully restored the generation of tonic GABA inhibition and effectively suppressed seizure susceptibility. We demonstrate for the first time that tonic GABA from reactive astrocytes strongly contributes to the compensatory shift of E/I balance in epileptic hippocampi, serving as a good therapeutic target against altered E/I balance in epileptic seizures.


Assuntos
Astrócitos/metabolismo , Bestrofinas/metabolismo , Hipocampo/metabolismo , Inibição Neural/fisiologia , Convulsões/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Bestrofinas/genética , Ácido Caínico , Camundongos , Camundongos Knockout , Receptores de GABA-A/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética
12.
Anesthesiology ; 129(3): 477-489, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29889105

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors. METHODS: Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied. RESULTS: The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia. CONCLUSIONS: Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor-dependent pathway may be targeted to prevent delirium.


Assuntos
Anestésicos Intravenosos/farmacologia , Dexmedetomidina/farmacologia , Etomidato/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA-A/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Mol Pharmacol ; 90(5): 530-539, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27573669

RESUMO

α-Pinene is a major monoterpene of the pine tree essential oils. It has been reported that α-pinene shows anxiolytic and hypnotic effects upon inhaled administration. However, hypnotic effect by oral supplementation and the molecular mechanism of α-pinene have not been determined yet. By combining in vivo sleep behavior, ex vivo electrophysiological recording from brain slices, and in silico molecular modeling, we demonstrate that (-)-α-pinene shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site. The effect of (-)-α-pinene on sleep-wake profiles was evaluated by recording electroencephalogram and electromyogram. The molecular mechanism of (-)-α-pinene was investigated by electrophysiology and molecular docking study. (-)-α-pinene significantly increased the duration of non-rapid eye movement sleep (NREMS) and reduced the sleep latency by oral administration without affecting duration of rapid eye movement sleep and delta activity. (-)-α-pinene potentiated the GABAA receptor-mediated synaptic response by increasing the decay time constant of sIPSCs in hippocampal CA1 pyramidal neurons. These effects of (-)-α-pinene on sleep and inhibitory synaptic response were mimicked by zolpidem, acting as a modulator for GABAA-BZD receptors, and fully antagonized by flumazenil, an antagonist for GABAA-BZD receptor. (-)-α-pinene was found to bind to aromatic residues of α1- and -γ2 subunits of GABAA-BZD receptors in the molecular model. We conclude that (-)-α-pinene enhances the quantity of NREMS without affecting the intensity of NREMS by prolonging GABAergic synaptic transmission, acting as a partial modulator of GABAA-BZD receptors and directly binding to the BZD binding site of GABAA receptor.


Assuntos
Benzodiazepinas/metabolismo , Movimentos Oculares/efeitos dos fármacos , Monoterpenos/farmacologia , Pinus/química , Óleos de Plantas/farmacologia , Receptores de GABA-A/metabolismo , Sono/efeitos dos fármacos , Animais , Monoterpenos Bicíclicos , Sítios de Ligação , Flumazenil/química , Flumazenil/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Modelos Moleculares , Monoterpenos/química , Pentobarbital , Piridinas/química , Piridinas/farmacologia , Sono REM/efeitos dos fármacos , Fatores de Tempo , Vigília/efeitos dos fármacos , Zolpidem
14.
J Physiol ; 592(22): 4951-68, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25239459

RESUMO

GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5-10 mM by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca(2+)-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain.


Assuntos
Monoaminoxidase/metabolismo , Neuroglia/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoaminoxidase/genética , Inibição Neural , Neuroglia/fisiologia
15.
Neuroscientist ; 29(4): 445-460, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35373633

RESUMO

Astrocytes are the most abundant glial cell in the central nervous system and occupy a wide range of roles that are essential for brain function. Over the past few years, evidence has emerged that astrocytes exhibit cellular and molecular heterogeneity, raising the possibility that subsets of astrocytes are functionally distinct and that transcriptional mechanisms are involved in encoding this prospective diversity. In this review, we focus on three emerging areas of astrocyte biology: region-specific circuit regulation, molecular diversity, and transcriptional regulation. This review highlights our nascent understanding of how molecular diversity is converted to functional diversity of astrocytes through the lens of brain region-specific circuits. We articulate our understanding of how transcriptional mechanisms regulate this diversity and key areas that need further exploration to achieve the overarching goal of a functional taxonomy of astrocytes in the brain.


Assuntos
Astrócitos , Sistema Nervoso Central , Humanos , Estudos Prospectivos , Encéfalo/fisiologia , Regulação da Expressão Gênica
16.
Neuron ; 111(8): 1301-1315.e5, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36787749

RESUMO

Social experience is essential for the development and maintenance of higher-order brain function. Social deprivation results in a host of cognitive deficits, and cellular studies have largely focused on associated neuronal dysregulation; how astrocyte function is impacted by social deprivation is unknown. Here, we show that hippocampal astrocytes from juvenile mice subjected to social isolation exhibit increased Ca2+ activity and global changes in gene expression. We found that the Ca2+ channel TRPA1 is upregulated in astrocytes after social deprivation and astrocyte-specific deletion of TRPA1 reverses the physiological and cognitive deficits associated with social deprivation. Mechanistically, TRPA1 inhibition of hippocampal circuits is mediated by a parallel increase of astrocytic production and release of the inhibitory neurotransmitter GABA after social deprivation. Collectively, our studies reveal how astrocyte function is tuned to social experience and identifies a social-context-specific mechanism by which astrocytic TRPA1 and GABA coordinately suppress hippocampal circuit function.


Assuntos
Astrócitos , Hipocampo , Camundongos , Animais , Astrócitos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Privação Social , Ácido gama-Aminobutírico/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
17.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993256

RESUMO

Communication between neurons and glia plays an important role in establishing and maintaining higher order brain function. Astrocytes are endowed with complex morphologies which places their peripheral processes in close proximity to neuronal synapses and directly contributes to their regulation of brain circuits. Recent studies have shown that excitatory neuronal activity promotes oligodendrocyte differentiation; whether inhibitory neurotransmission regulates astrocyte morphogenesis during development is unknown. Here we show that inhibitory neuron activity is necessary and sufficient for astrocyte morphogenesis. We found that input from inhibitory neurons functions through astrocytic GABA B R and that its deletion in astrocytes results in a loss of morphological complexity across a host of brain regions and disruption of circuit function. Expression of GABA B R in developing astrocytes is regulated in a region-specific manner by SOX9 or NFIA and deletion of these transcription factors results in region-specific defects in astrocyte morphogenesis, which is conferred by interactions with transcription factors exhibiting region-restricted patterns of expression. Together our studies identify input from inhibitory neurons and astrocytic GABA B R as universal regulators of morphogenesis, while further revealing a combinatorial code of region-specific transcriptional dependencies for astrocyte development that is intertwined with activity-dependent processes.

18.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909526

RESUMO

Neuronal activity drives global alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. Here we show that neuronal activity induces widespread transcriptional upregulation and downregulation in astrocytes, highlighted by the identification of a neuromodulator transporter Slc22a3 as an activity-inducible astrocyte gene regulating sensory processing in the olfactory bulb. Loss of astrocytic Slc22a3 reduces serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduces expression of GABA biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes, while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.

19.
Science ; 380(6650): eade0027, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319217

RESUMO

Neuronal activity drives alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. We found that neuronal activity induces widespread transcriptional up-regulation and down-regulation in astrocytes, highlighted by the identification of Slc22a3 as an activity-inducible astrocyte gene that encodes neuromodulator transporter Slc22a3 and regulates sensory processing in the mouse olfactory bulb. Loss of astrocytic Slc22a3 reduced serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduced the expression of γ-aminobutyric acid (GABA) biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.


Assuntos
Astrócitos , Histonas , Bulbo Olfatório , Percepção Olfatória , Proteínas de Transporte de Cátions Orgânicos , Serotonina , Transmissão Sináptica , Animais , Camundongos , Astrócitos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Histonas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Serotonina/metabolismo , Bulbo Olfatório/metabolismo , Epigênese Genética , Percepção Olfatória/genética , Percepção Olfatória/fisiologia
20.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993539

RESUMO

The tumor microenvironment (TME) plays an essential role in malignancy and neurons have emerged as a key component of the TME that promotes tumorigenesis across a host of cancers. Recent studies on glioblastoma (GBM) highlight bi-directional signaling between tumors and neurons that propagates a vicious cycle of proliferation, synaptic integration, and brain hyperactivity; however, the identity of neuronal subtypes and tumor subpopulations driving this phenomenon are incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumors promote progression and widespread infiltration. Using this platform to examine GBM infiltration, we identified an activity dependent infiltrating population present at the leading edge of mouse and human tumors that is enriched for axon guidance genes. High-throughput, in vivo screening of these genes identified Sema4F as a key regulator of tumorigenesis and activity-dependent infiltration. Furthermore, Sema4F promotes the activity-dependent infiltrating population and propagates bi-directional signaling with neurons by remodeling tumor adjacent synapses towards brain network hyperactivity. Collectively, our studies demonstrate that subsets of neurons in locations remote to primary GBM promote malignant progression, while revealing new mechanisms of tumor infiltration that are regulated by neuronal activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA