Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(21): E4271-E4280, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484004

RESUMO

The polycistronic miR-183/96/182 cluster is preferentially and abundantly expressed in terminally differentiating sensory epithelia. To clarify its roles in the terminal differentiation of sensory receptors in vivo, we deleted the entire gene cluster in mouse germline through homologous recombination. The miR-183/96/182 null mice display impairment of the visual, auditory, vestibular, and olfactory systems, attributable to profound defects in sensory receptor terminal differentiation. Maturation of sensory receptor precursors is delayed, and they never attain a fully differentiated state. In the retina, delay in up-regulation of key photoreceptor genes underlies delayed outer segment elongation and possibly mispositioning of cone nuclei in the retina. Incomplete maturation of photoreceptors is followed shortly afterward by early-onset degeneration. Cell biologic and transcriptome analyses implicate dysregulation of ciliogenesis, nuclear translocation, and an epigenetic mechanism that may control timing of terminal differentiation in developing photoreceptors. In both the organ of Corti and the vestibular organ, impaired terminal differentiation manifests as immature stereocilia and kinocilia on the apical surface of hair cells. Our study thus establishes a dedicated role of the miR-183/96/182 cluster in driving the terminal differentiation of multiple sensory receptor cells.


Assuntos
Células Ciliadas Auditivas/citologia , Células Ciliadas Vestibulares/citologia , MicroRNAs/genética , Mucosa Olfatória/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Transtornos da Audição/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Transtornos do Olfato/genética , Mucosa Olfatória/metabolismo , Equilíbrio Postural/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transtornos de Sensação/genética , Transtornos da Visão/genética
2.
J Neurosci ; 36(7): 2176-89, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888928

RESUMO

Although the brain relies on auditory information to calibrate vocal behavior, the neural substrates of vocal learning remain unclear. Here we demonstrate that lesions of the dopaminergic inputs to a basal ganglia nucleus in a songbird species (Bengalese finches, Lonchura striata var. domestica) greatly reduced the magnitude of vocal learning driven by disruptive auditory feedback in a negative reinforcement task. These lesions produced no measureable effects on the quality of vocal performance or the amount of song produced. Our results suggest that dopaminergic inputs to the basal ganglia selectively mediate reinforcement-driven vocal plasticity. In contrast, dopaminergic lesions produced no measurable effects on the birds' ability to restore song acoustics to baseline following the cessation of reinforcement training, suggesting that different forms of vocal plasticity may use different neural mechanisms. SIGNIFICANCE STATEMENT: During skill learning, the brain relies on sensory feedback to improve motor performance. However, the neural basis of sensorimotor learning is poorly understood. Here, we investigate the role of the neurotransmitter dopamine in regulating vocal learning in the Bengalese finch, a songbird with an extremely precise singing behavior that can nevertheless be reshaped dramatically by auditory feedback. Our findings show that reduction of dopamine inputs to a region of the songbird basal ganglia greatly impairs vocal learning but has no detectable effect on vocal performance. These results suggest a specific role for dopamine in regulating vocal plasticity.


Assuntos
Dopamina/fisiologia , Tentilhões/fisiologia , Aprendizagem/fisiologia , Vocalização Animal/fisiologia , Animais , Gânglios da Base/citologia , Gânglios da Base/fisiologia , Contagem de Células , Condicionamento Operante/fisiologia , Retroalimentação Fisiológica , Masculino , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Reforço Psicológico
3.
Learn Mem ; 18(12): 747-50, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22086392

RESUMO

The N-methyl-D-aspartate receptor (NMDAR) is thought to be essential for synaptic plasticity and learning. However, recent work indicates that the role of this receptor depends on the prior history of the research subject. For example, animals trained on a hippocampus-dependent learning task are subsequently able to acquire new information in the absence of NMDAR activation. The current experiments were designed to identify the types of experiences that lead to NMDAR-independent learning. Using contextual fear conditioning in mice, we find that NMDAR-independent learning is only observed when (1) animals are trained on the same behavioral task and (2) initial learning is successfully encoded into long-term memory.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Condicionamento Clássico , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA