Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Br J Cancer ; 130(6): 934-940, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243011

RESUMO

BACKGROUND: Several diagnostic prediction models to help clinicians discriminate between benign and malignant adnexal masses are available. This study is a head-to-head comparison of the performance of the Assessment of Different NEoplasias in the adneXa (ADNEX) model with that of the Risk of Ovarian Malignancy Algorithm (ROMA). METHODS: This is a retrospective study based on prospectively included consecutive women with an adnexal tumour scheduled for surgery at five oncology centres and one non-oncology centre in four countries between 2015 and 2019. The reference standard was histology. Model performance for ADNEX and ROMA was evaluated regarding discrimination, calibration, and clinical utility. RESULTS: The primary analysis included 894 patients, of whom 434 (49%) had a malignant tumour. The area under the receiver operating characteristic curve (AUC) was 0.92 (95% CI 0.88-0.95) for ADNEX with CA125, 0.90 (0.84-0.94) for ADNEX without CA125, and 0.85 (0.80-0.89) for ROMA. ROMA, and to a lesser extent ADNEX, underestimated the risk of malignancy. Clinical utility was highest for ADNEX. ROMA had no clinical utility at decision thresholds <27%. CONCLUSIONS: ADNEX had better ability to discriminate between benign and malignant adnexal tumours and higher clinical utility than ROMA. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov NCT01698632 and NCT02847832.


Assuntos
Doenças dos Anexos , Neoplasias Ovarianas , Humanos , Feminino , Estudos Retrospectivos , Ultrassonografia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/cirurgia , Neoplasias Ovarianas/patologia , Doenças dos Anexos/diagnóstico , Doenças dos Anexos/cirurgia , Doenças dos Anexos/patologia , Algoritmos , Sensibilidade e Especificidade , Antígeno Ca-125
2.
Int J Gynecol Cancer ; 32(12): 1583-1591, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36028235

RESUMO

OBJECTIVE: Ovarian cancer remains the fifth leading cause of cancer-related deaths in women. The immune system influences the onset and progression of ovarian cancer. Therefore, we aimed to study the behavior of ovarian cancer in patients with a pre-existing immune dysfunction, more specifically autoimmune disease. METHODS: For this systematic review we carried out a systematic search of four electronic databases (MEDLINE, Embase, CENTRAL, Web of Science) with the two main search terms "autoimmunity" and "ovarian cancer" up to May 10, 2020. We included 36 different autoimmune diseases in our search. From the 4799 screened records, we identified 53 relevant articles for our review, of which 48 were used in our meta-analysis. RESULTS: The incidence of ovarian cancer was significantly lower in patients with multiple sclerosis (standardized incidence ratio (SIR) 0.76, 95% CI 0.60 to 0.96). There was a tendency towards a lower risk of ovarian cancer in patients with systematic lupus erythematosus (SIR 0.89, 95% CI 0.68 to 1.15) and a tendency towards a higher risk in those with type 1 diabetes mellitus (SIR 1.49, 95% CI 0.98 to 2.28); however, this was not statistically significant. No conclusions could be drawn on mortality or the influence of immunosuppressive drugs used in the treatment of autoimmune diseases and the incidence of ovarian cancer. CONCLUSIONS: Our study showed a decreased incidence of ovarian cancer in patients with multiple sclerosis. However, further investigation on the role of the immune system in the development of ovarian cancer in women with autoimmune diseases remains necessary.


Assuntos
Doenças Autoimunes , Esclerose Múltipla , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/epidemiologia , Doenças Autoimunes/complicações , Doenças Autoimunes/epidemiologia , Esclerose Múltipla/epidemiologia
3.
Methods Cell Biol ; 183: 381-397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548420

RESUMO

Glioblastoma (GBM) is the deadliest of all brain cancers. GBM patients receive an intensive treatment schedule consisting of surgery, radiotherapy and chemotherapy, which only modestly extends patient survival. Therefore, preclinical studies are testing novel experimental treatments. In such preclinical studies, these treatments are administered as monotherapy in the majority of cases; conversely, in patients the new treatments are always combined with the standard of care. Most likely, this difference contributes to the failure of clinical trials despite the successes of the preclinical studies. In this methodological study, we show in detail how to implement the full clinical standard of care in preclinical GBM research. Systematically testing new treatments, including cellular immunotherapies, in combination with the clinical standard of care can result in a better translation of preclinical results to the clinic and ultimately increase patient survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Padrão de Cuidado , Neoplasias Encefálicas/tratamento farmacológico
4.
Front Oncol ; 14: 1402851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993641

RESUMO

Background: Ovarian cancer is the leading cause of mortality among gynecological malignancies. Carboplatin and poly (ADP-ribose) polymerase inhibitors (PARPi) are often implemented in the treatment of ovarian cancer. Homologous recombination deficient (HRD) tumors demonstrate increased sensitivity to these treatments; however, many ovarian cancer patients are homologous recombination proficient (HRP). TTFields are non-invasive electric fields that induce an HRD-like phenotype in various cancer types. The current study aimed to investigate the impact of TTFields applied together with carboplatin or PARPi (olaparib or niraparib) in preclinical ovarian cancer models. Methods: A2780 (HRP), OVCAR3 (HRD), and A2780cis (platinum-resistant) human ovarian cancer cells were treated in vitro with TTFields (1 V/cm RMS, 200 kHz, 72 h), alone or with various drug concentrations. Treated cells were measured for cell count, colony formation, apoptosis, DNA damage, expression of DNA repair proteins, and cell cycle. In vivo, ID8-fLuc (HRP) ovarian cancer cells were inoculated intraperitoneally to C57BL/6 mice, which were then treated with either sham, TTFields (200 kHz), olaparib (50 mg/kg), or TTFields plus olaparib; over a period of four weeks. Tumor growth was analyzed using bioluminescent imaging at treatment cessation; and survival analysis was performed. Results: The nature of TTFields-drug interaction was dependent on the drug's underlying mechanism of action and on the genetic background of the cells, with synergistic interactions between TTFields and carboplatin or PARPi seen in HRP and resistant cells. Treated cells demonstrated elevated levels of DNA damage, accompanied by G2/M arrest, and induction of an HRD-like phenotype. In the tumor-bearing mice, TTFields and olaparib co-treatment resulted in reduced tumor volume and a survival benefit relative to olaparib monotherapy and to control. Conclusion: By inducing an HRD-like phenotype, TTFields sensitize HRP and resistant ovarian cancer cells to treatment with carboplatin or PARPi, potentially mitigating a-priori and de novo drug resistance, a major limitation in ovarian cancer treatment.

5.
Front Immunol ; 14: 1236965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744323

RESUMO

Immune checkpoint inhibitors (ICI) have been revolutionary in the field of cancer therapy. However, their success is limited to specific indications and cancer types. Recently, the combination treatment of ICI and chemotherapy has gained more attention to overcome this limitation. Unfortunately, many clinical trials testing these combinations have provided limited success. This can partly be attributed to an inadequate choice of preclinical models and the lack of scientific rationale to select the most effective immune-oncological combination. In this review, we have analyzed the existing preclinical evidence on this topic, which is only limitedly available. Furthermore, this preclinical data indicates that besides the selection of a specific drug and dose, also the sequence or order of the combination treatment influences the study outcome. Therefore, we conclude that the success of clinical combination trials could be enhanced by improving the preclinical set up, in order to identify the optimal treatment combination and schedule to enhance the anti-tumor immunity.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Imunoterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores de Checkpoint Imunológico , Oncologia , Pesquisa
6.
J Neurosurg Sci ; 67(1): 55-65, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33056947

RESUMO

BACKGROUND: In the context of high-grade gliomas (HGGs), very little evidence is available concerning the optimal radiotherapy (RT) schedule to be used in radioimmunotherapy combinations. This studied was aimed at shedding new light in this field by analyzing the effects of RT dose escalation and dose fractionation on the tumor microenvironment of experimental HGGs. METHODS: Neurospheres (NS) CT-2A HGG-bearing C57BL/6 mice were treated with stereotactic RT. For dose-escalation experiments, mice received 2, 4 or 8 Gy as single administrations. For dose-fractionation experiments, mice received 4 Gy as a single fraction or multiple (1.33x3 Gy) fractions. The impact of the RT schedule on murine survival and tumor immunity was evaluated. Modifications of glioma stem cells (GSCs), tumor vasculature and tumor cell replication were also assessed. RESULTS: RT dose-escalation was associated with an improved immune profile, with higher CD8+ T cells and CD8+ T cells/regulatory T cells (Tregs) ratio (P=0.0003 and P=0.0022, respectively) and lower total tumor associated microglia/macrophages (TAMs), M2 TAMs and monocytic myeloid derived suppressor cells (mMDSCs) (P=0.0011, P=0.0024 and P<0.0001, respectively). The progressive increase of RT dosages prolonged survival (P<0.0001) and reduced tumor vasculature (P=0.069), tumor cell proliferation (P<0.0001) and the amount of GSCs (P=0.0132 or lower). Compared to the unfractionated regimen, RT dose-fractionation negatively affected tumor immunity by inducing higher total TAMs, M2 TAMs and mMDSCs (P=0.0051, P=0.0036 and P=0.0436, respectively). Fractionation also induced a shorter survival (P=0.0078), a higher amount of GSCs (P=0.0015 or lower) and a higher degree of tumor cell proliferation (P=0.0003). CONCLUSIONS: This study demonstrates that RT dosage and fractionation significantly influence survival, tumor immunity and GSCs in experimental HGGs. These findings should be taken into account when aiming at designing more synergistic and effective radio-immunotherapy combinations.


Assuntos
Glioma , Microambiente Tumoral , Animais , Camundongos , Linfócitos T CD8-Positivos/patologia , Camundongos Endogâmicos C57BL , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Doses de Radiação
7.
Pharmaceutics ; 14(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35456521

RESUMO

Novel treatment strategies are needed to provide a better prognosis for ovarian cancer. For this purpose, the current study was designed to evaluate the effects of different types of particle drug carriers on tumor response and on the tumor immune microenvironment (TME) after intraperitoneal (IP) administration in a murine tumor model. Mice with ID8-fLuc ovarian cancer were injected IP with pegylated liposomes, hydroxyapatite, polystyrene, poly(lactic-co-glycolic acid) (PLGA) and calcium carbonate (CaCO3) microparticles to evaluate the effect of the candidate carriers without drugs. Our results show that several types of microparticle drug carriers caused hyperproliferation of the tumor when injected IP, as reflected in a reduced survival or an accelerated onset of ascites. Alterations of the product formulation of CaCO3 microparticles could result in less hyperproliferation. The hyperproliferation caused by CaCO3 and PLGA was largely driven by a strong innate immune suppression. A combination with chemotherapy was not able to sufficiently counteract the tumor progression caused by the drug carriers. This research points towards the importance of evaluating a drug carrier before using it in a therapeutic setting, since drug carriers themselves can detrimentally influence tumor progression and immune status of the TME. However, it remains to be determined whether the hyperproliferation in this model will be of relevance in other cancer models or in humans.

8.
Front Med (Lausanne) ; 9: 995325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300186

RESUMO

A novel alpha-therapy consisting of 224Ra-labeled calcium carbonate microparticles (224Ra-CaCO3-MP) has been designed to treat micrometastatic peritoneal disease via intraperitoneal (IP) administration. This preclinical study aimed to evaluate its efficacy and tolerability when given as a single treatment or in combination with standard of care chemotherapy regimens, in a syngeneic model of ovarian cancer in immune competent mice. Female C57BL/6 mice bearing ID8-fLuc ovarian cancer were treated with 224Ra-CaCO3-MP 1 day after IP tumor cell inoculation. The activity dosages of 224Ra ranged from 14 to 39 kBq/mouse. Additionally, 224Ra-CaCO3-MP treatment was followed by either carboplatin (80 mg/kg)-pegylated liposomal doxorubicin (PLD, 1.6 mg/kg) or carboplatin (60 mg/kg)-paclitaxel (10 mg/kg) on day 14 post tumor cell inoculation. All treatments were administered via IP injections. Readouts included survival, clinical signs, and body weight development over time. There was a slight therapeutic benefit after single treatment with 224Ra-CaCO3-MP compared to the vehicle control, with median survival ratios (MSRs) ranging between 1.1 and 1.3. The sequential administration of 224Ra-CaCO3-MP with either carboplatin-paclitaxel or carboplatin-PLD indicated a synergistic effect on overall survival at certain 224Ra activities. Moreover, the combinations tested appeared well tolerated in terms of weight assessment in the first 4 weeks after treatment. Overall, this research supports the further evaluation of 224Ra-CaCO3-MP in patients with ovarian cancer. However, the most optimal chemotherapy regimen to combine with 224Ra-CaCO3-MP should be identified to fully exploit its therapeutic potential.

9.
Neurosurgery ; 88(2): E205-E215, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33289503

RESUMO

BACKGROUND: The lack of immune synergy with conventional chemoradiation could explain the failure of checkpoint inhibitors in current clinical trials for high-grade gliomas (HGGs). OBJECTIVE: To analyze the impact of radiotherapy (RT), Temozolomide (TMZ) and antiprogrammed cell death protein 1 (αPD1) (as single or combined treatments) on the immune microenvironment of experimental HGGs. METHODS: Mice harboring neurosphere /CT-2A HGGs received RT (4 Gy, single dose), TMZ (50 mg/kg, 4 doses) and αPD1 (100 µg, 3 doses) as monotherapies or combinations. The influence on survival, tumor volume, and tumor-infiltrating immune cells was analyzed. RESULTS: RT increased total T cells (P = .0159) and cluster of differentiation (CD)8+ T cells (P = .0078) compared to TMZ. Lymphocyte subpopulations resulting from TMZ or αPD1 treatment were comparable with those of controls. RT reduced M2 tumor-associated macrophages/microglia (P = .0019) and monocytic myeloid derived suppressor cells (mMDSCs, P = .0003) compared to controls. The effect on mMDSC was also seen following TMZ and αPD1 treatment, although less pronounced (P = .0439 and P = .0538, respectively). Combining RT with TMZ reduced CD8+ T cells (P = .0145) compared to RT alone. Adding αPD1 partially mitigated this effect as shown by the increased CD8+ T cells/Tregs ratio, even if this result failed to reach statistical significance (P = .0973). Changing the combination sequence of RT, TMZ, and αPD1 did not alter survival nor the immune effects. CONCLUSION: RT, TMZ, and αPD1 modify the immune microenvironment of HGG. The combination of RT with TMZ induces a strong immune suppression which cannot be effectively counteracted by αPD1.


Assuntos
Neoplasias Encefálicas/imunologia , Quimiorradioterapia/métodos , Glioma/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Temozolomida/farmacologia
10.
Cancers (Basel) ; 13(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885008

RESUMO

In monotherapy, immunotherapy has a poor success rate in ovarian cancer. Upgrading to a successful combinatorial immunotherapy treatment implies knowledge of the immune changes that are induced by chemotherapy and surgery. METHODOLOGY: Patients with a new d ovarian cancer diagnosis underwent longitudinal blood samples at different time points during primary treatment. RESULTS: Ninety patients were included in the study (33% primary debulking surgery (PDS) with adjuvant chemotherapy (ACT), 61% neo-adjuvant chemotherapy (NACT) with interval debulking surgery (IDS), and 6% debulking surgery only). Reductions in immunosuppression were observed after NACT, but surgery reverted this effect. The immune-related proteins showed a pronounced decrease in immune stimulation and immunosuppression when primary treatment was completed. NACT with IDS leads to a transient amelioration of the immune microenvironment compared to PDS with ACT. CONCLUSION: The implementation of immunotherapy in the primary treatment schedule of ovarian cancer cannot be induced blindly. Carboplatin-paclitaxel seems to ameliorate the hostile immune microenvironment in ovarian cancer, which is less pronounced at the end of primary treatment. This prospective study during primary therapy for ovarian cancer that also looks at the evolution of immune-related proteins provides us with an insight into the temporary windows of opportunity in which to introduce immunotherapy during primary treatment.

11.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795003

RESUMO

BACKGROUND: Tumors can influence peripheral immune macroenvironment, thereby creating opportunities for non-invasive serum/plasma immunobiomarkers for immunostratification and immunotherapy designing. However, current approaches for immunobiomarkers' detection are largely quantitative, which is unreliable for assessing functional peripheral immunodynamics of patients with cancer. Hence, we aimed to design a functional biomarker modality for capturing peripheral immune signaling in patients with cancer for reliable immunostratification. METHODS: We used a data-driven in silico framework, integrating existing tumor/blood bulk-RNAseq or single-cell (sc)RNAseq datasets of patients with cancer, to inform the design of an innovative serum-screening modality, that is, serum-functional immunodynamic status (sFIS) assay. Next, we pursued proof-of-concept analyses via multiparametric serum profiling of patients with ovarian cancer (OV) with sFIS assay combined with Luminex (cytokines/soluble immune checkpoints), CA125-antigen detection, and whole-blood immune cell counts. Here, sFIS assay's ability to determine survival benefit or malignancy risk was validated in a discovery (n=32) and/or validation (n=699) patient cohorts. Lastly, we used an orthotopic murine metastatic OV model, with anti-OV therapy selection via in silico drug-target screening and murine serum screening via sFIS assay, to assess suitable in vivo immunotherapy options. RESULTS: In silico data-driven framework predicted that peripheral immunodynamics of patients with cancer might be best captured via analyzing myeloid nuclear factor kappa-light-chain enhancer of activated B cells (NFκB) signaling and interferon-stimulated genes' (ISG) responses. This helped in conceptualization of an 'in sitro' (in vitro+in situ) sFIS assay, where human myeloid cells were exposed to patients' serum in vitro, to assess serum-induced (si)-NFκB or interferon (IFN)/ISG responses (as active signaling reporter activity) within them, thereby 'mimicking' patients' in situ immunodynamic status. Multiparametric serum profiling of patients with OV established that sFIS assay can: decode peripheral immunology (by indicating higher enrichment of si-NFκB over si-IFN/ISG responses), estimate survival trends (si-NFκB or si-IFN/ISG responses associating with negative or positive prognosis, respectively), and coestimate malignancy risk (relative to benign/borderline ovarian lesions). Biologically, we documented dominance of pro-tumorigenic, myeloid si-NFκB responseHIGHsi-IFN/ISG responseLOW inflammation in periphery of patients with OV. Finally, in an orthotopic murine metastatic OV model, sFIS assay predicted the higher capacity of chemo-immunotherapy (paclitaxel-carboplatin plus anti-TNF antibody combination) in achieving a pro-immunogenic peripheral milieu (si-IFN/ISG responseHIGHsi-NFκB responseLOW), which aligned with high antitumor efficacy. CONCLUSIONS: We established sFIS assay as a novel biomarker resource for serum screening in patients with OV to evaluate peripheral immunodynamics, patient survival trends and malignancy risk, and to design preclinical chemo-immunotherapy strategies.


Assuntos
Imunoterapia/métodos , NF-kappa B/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Animais , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Análise de Sobrevida
12.
Cancers (Basel) ; 13(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374542

RESUMO

Glioblastoma (GBM) is the most aggressive intrinsic brain tumor in adults. Despite maximal therapy consisting of surgery and radio/chemotherapy, GBM remains largely incurable with a median survival of less than 15 months. GBM has a strong immunosuppressive nature with a multitude of tumor and microenvironment (TME) derived factors that prohibit an effective immune response. To date, all clinical trials failed to provide lasting clinical efficacy, despite the relatively high success rates of preclinical studies to show effectivity of immunotherapy. Various factors may explain this discrepancy, including the inability of a single mouse model to fully recapitulate the complexity and heterogeneity of GBM. It is therefore critical to understand the features and limitations of each model, which should probably be combined to grab the full spectrum of the disease. In this review, we summarize the available knowledge concerning immune composition, stem cell characteristics and response to standard-of-care and immunotherapeutics for the most commonly available immunocompetent mouse models of GBM.

13.
Cells ; 9(2)2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012728

RESUMO

The role of the innate immune system in ovarian cancer is gaining importance. The relevance of tumor-associated macrophages (TAM) is insufficiently understood. In this pilot project, comprising the immunofluorescent staining of 30 biopsies taken from 24 patients with ovarian cancer, we evaluated the presence of total TAM (cluster of differentiation (CD) 68 expression), M1 (major histocompatibility complex (MHC) II expression), and M2 (anti-mannose receptor C type 1 (MRC1) expression), and the blood vessel diameter. We observed a high M1/M2 ratio in low-grade ovarian cancer compared to high-grade tumors, more total TAM and M2 in metastatic biopsies, and a further increase in total TAM and M2 at interval debulking, without beneficial effects of bevacizumab. The blood vessel diameter was indicative for M2 tumor infiltration (Spearman correlation coefficient of 0.65). These data mainly reveal an immune beneficial environment in low-grade ovarian cancer in contrast to high-grade serous ovarian cancer, where immune suppression is not altered by neoadjuvant therapy.


Assuntos
Polaridade Celular , Macrófagos/patologia , Neoplasias Ovarianas/patologia , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Biópsia , Vasos Sanguíneos/patologia , Feminino , Transportador de Glucose Tipo 1/metabolismo , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Projetos Piloto
14.
Anticancer Res ; 39(11): 5953-5962, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31704820

RESUMO

BACKGROUND/AIM: The presence of ascites in ovarian cancer patients is considered a negative prognostic factor. The underlying mechanisms are not clearly understood. MATERIALS AND METHODS: The amount of ascites was evaluated, preferably, using diffusion-weighted MRI at primary diagnosis in a retrospective cohort of 214 women with ovarian cancer, in an ordinal manner (amount of ascites: none, limited, moderate, abundant). In a prospective cohort comprising 45 women with ovarian cancer, IL-10 (interleukin), VEGF (vascular endothelial growth factor), TGF-ß (transforming growth factor) and CCL-2 [chemokine (C-C) motif ligand 2] were measured at diagnosis (and at interval debulking, when available). RESULTS: Gradually increasing amounts of ascites were correlated significantly, even after correction for FIGO stage, with reduced survival (p<0.0001) and stronger immunosuppression (IL10 and VEGF). Neoadjuvant chemotherapy reduced immunosuppression, which was observed as a reduction in CCL-2, IL-10 and VEGF. CONCLUSION: The amount of ascites is an independent predictor of survival and correlates with increased immunosuppression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ascite/mortalidade , Terapia de Imunossupressão/mortalidade , Terapia Neoadjuvante/efeitos adversos , Neoplasias Ovarianas/mortalidade , Adenocarcinoma de Células Claras/tratamento farmacológico , Adenocarcinoma de Células Claras/imunologia , Adenocarcinoma de Células Claras/mortalidade , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma Mucinoso/tratamento farmacológico , Adenocarcinoma Mucinoso/imunologia , Adenocarcinoma Mucinoso/mortalidade , Adenocarcinoma Mucinoso/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ascite/etiologia , Ascite/patologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/imunologia , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/patologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/patologia , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
15.
Biol Open ; 8(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31511246

RESUMO

Recently, several promising treatments for high-grade gliomas (HGGs) failed to provide significant benefit when translated from the preclinical setting to patients. Improving the animal models is fundamental to overcoming this translational gap. To address this need, we developed and comprehensively characterized a new in vivo model based on the orthotopic implantation of CT-2A cells cultured in neurospheres (NS/CT-2A). Murine CT-2A methylcholanthrene-induced HGG cells (C57BL/6 background) were cultured in monolayers (ML) or NS and orthotopically inoculated in syngeneic animals. ML/CT-2A and NS/CT-2A tumors' characterization included the analysis of tumor growth, immune microenvironment, glioma stem cells (GSCs), vascularization and metabolites. The immuno-modulating properties of NS/CT-2A and ML/CT-2A cells on splenocytes were tested in vitro Mice harboring NS/CT-2A tumors had a shorter survival than those harboring ML/CT-2A tumors (P=0.0033). Compared to standard ML/CT-2A tumors, NS/CT-2A tumors showed more abundant GSCs (P=0.0002 and 0.0770 for Nestin and CD133, respectively) and regulatory T cells (Tregs, P=0.0074), and a strong tendency towards an increased vascularization (P=0.0503). There were no significant differences in metabolites' composition between NS/ and ML/CT-2A tumors. In vitro, NS were able to drive splenocytes towards a more immunosuppressive status by reducing CD8+ T cells (P=0.0354) and by promoting Tregs (P=0.0082), macrophages (MF, P=0.0019) and their M2 subset (P=0.0536). Compared to standard ML/CT-2A tumors, NS/CT-2A tumors show a more aggressive phenotype with increased immunosuppression and GSCs proliferation. Because of these specific features, the NS/CT-2A model represents a clinically relevant platform in the search for new HGG treatments aimed at reducing immunosuppression and eliminating GSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA