Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nano Lett ; 18(4): 2435-2441, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29533632

RESUMO

Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin-orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.

2.
Nano Lett ; 15(8): 5307-13, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26154305

RESUMO

We report subnanometer modification enabled by an ultrafine helium ion beam. By adjusting ion dose and the beam profile, structural defects were controllably introduced in a few-layer molybdenum disulfide (MoS2) sample and its stoichiometry was modified by preferential sputtering of sulfur at a few-nanometer scale. Localized tuning of the resistivity of MoS2 was demonstrated and semiconducting, metallic-like, or insulating material was obtained by irradiation with different doses of He(+). Amorphous MoSx with metallic behavior has been demonstrated for the first time. Fabrication of MoS2 nanostructures with 7 nm dimensions and pristine crystal structure was also achieved. The damage at the edges of these nanostructures was typically confined to within 1 nm. Nanoribbons with widths as small as 1 nm were reproducibly fabricated. This nanoscale modification technique is a generalized approach that can be applied to various two-dimensional (2D) materials to produce a new range of 2D metamaterials.

3.
Nano Lett ; 14(8): 4389-94, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25046135

RESUMO

The photothermoelectric effect in topological insulator Bi2Se3 nanoribbons is studied. The topological surface states are excited to be spin-polarized by circularly polarized light. Because the direction of the electron spin is locked to its momentum for the spin-helical surface states, the photothermoelectric effect is significantly enhanced as the oriented motions of the polarized spins are accelerated by the temperature gradient. The results are explained based on the microscopic mechanisms of a photon induced spin transition from the surface Dirac cone to the bulk conduction band. The as-reported enhanced photothermoelectric effect is expected to have potential applications in a spin-polarized power source.

4.
ACS Appl Mater Interfaces ; 16(17): 22622-22631, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625091

RESUMO

The strong light-matter interaction and naturally passivated surfaces of van der Waals materials make heterojunctions of such materials ideal candidates for high-performance photodetectors. In this study, we fabricated SnS2/MoS2 van der Waals heterojunctions and investigated their photoelectric properties. Using an applied gate voltage, we can effectively alter the band arrangement and achieve a transition in type II and type I junctions. It is found that the SnS2/MoS2 van der Waals heterostructures are type II heterojunctions when the gate voltage is above -25 V. Below this gate voltage, the heterojunctions become type I. Photoelectric measurements under various wavelengths of incident light reveal enhanced sensitivity in the ultraviolet region and a broadband sensing range from 400 to 800 nm. Moreover, due to the transition from type II to type I band alignment, the measured photocurrent saturates at a specific gate voltage, and this value depends crucially on the bias voltage and light wavelength, providing a potential avenue for designing compact spectrometers.

5.
Nat Commun ; 15(1): 676, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263315

RESUMO

Miniaturized spectrometers have great potential for use in portable optoelectronics and wearable sensors. However, current strategies for miniaturization rely on von Neumann architectures, which separate the spectral sensing, storage, and processing modules spatially, resulting in high energy consumption and limited processing speeds due to the storage-wall problem. Here, we present a miniaturized spectrometer that utilizes a single SnS2/ReSe2 van der Waals heterostructure, providing photodetection, spectrum reconstruction, spectral imaging, long-term image memory, and signal processing capabilities. Interface trap states are found to induce a gate-tunable and wavelength-dependent photogating effect and a non-volatile optoelectronic memory effect. Our approach achieves a footprint of 19 µm, a bandwidth from 400 to 800 nm, a spectral resolution of 5 nm, and a > 104 s long-term image memory. Our single-detector computational spectrometer represents a path beyond von Neumann architectures.

6.
ACS Appl Mater Interfaces ; 16(7): 9495-9505, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334441

RESUMO

Nanodevices based on van der Waals heterostructures have been predicted, and shown, to have unprecedented operational principles and functionalities that hold promise for highly sensitive and selective gas sensors with rapid response times and minimal power consumption. In this study, we fabricated gas sensors based on vertical MoS2/WS2 van der Waals heterostructures and investigated their gas sensing capabilities. Compared with individual MoS2 or WS2 gas sensors, the MoS2/WS2 van der Waals heterostructure gas sensors are shown to have enhanced sensitivity, faster response times, rapid recovery, and a notable selectivity, especially toward NO2. In combination with a theoretical model, we show that it is important to take into account created trapped states (flat bands) induced by the adsorption of gas molecules, which capture charges and alter the inherent built-in potential of van der Waals heterostructure gas sensors. Additionally, we note that the performance of these MoS2/WS2 heterostructure gas sensors could be further enhanced using electrical gating and mechanical strain. Our findings highlight the importance of understanding the effects of altered built-in potentials arising from gas molecule adsorption induced flat bands, thus offering a way to enhance the gas sensing performance of van der Waals heterostructure gas sensors.

7.
Small ; 9(13): 2240-4, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23401376

RESUMO

Control of graphene memory devices using photons, via control of the charge-transfer process, is demonstrated by employing gate-voltage pulses to program/erase the memory elements. The hysteresis in the conductance-gate voltage-dependence of graphene field-effect transistors on a SiO2 substrate can be greatly enlarged by ultraviolet irradiation in both air and vacuum. An enhanced charge transfer between graphene and its surroundings, induced by ultraviolet illumination, is proposed.

8.
ACS Appl Mater Interfaces ; 15(13): 17335-17343, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972407

RESUMO

The high surface-to-volume ratio and flatness of mechanically exfoliated van der Waals (vdW) layered materials make them an ideal platform to investigate the Langmuir absorption model. In this work, we fabricated field effect transistor gas sensors, based on a variety of mechanically exfoliated vdW materials, and investigated their electrical field-dependent gas sensing properties. The good agreement between the experimentally extracted intrinsic parameters, such as equilibrium constant and adsorption energy, and theoretically predicted values suggests validity of the Langmuir absorption model for vdW materials. Moreover, we show that the device sensing behavior depends crucially on the availability of carriers, and giant sensitivities and strong selectivity can be achieved at the sensitivity singularity. Finally, we demonstrate that such features provide a fingerprint for different gases to quickly detect and differentiate between low concentrations of mixed hazardous gases using sensor arrays.

9.
Nanotechnology ; 23(30): 305704, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22781636

RESUMO

High quality Bi(2)Se(3) nanoflake arrays with a large area and high-yield production have been fabricated by chemical vapor deposition. As the essential candidate for a topological insulator, the unique surface electronic states are considered to play a crucial role distinct from the bulk. Our experimental results show that environmental doping significantly affects the field emission properties of the synthesized Bi(2)Se(3) nanoflake arrays. X-ray photoelectron spectroscopy characterizations indicate that the rapid surface oxidation may prohibit the detection of the topological surface state and results in a low field emission current. This work provides another insight to investigate the surface state of topological insulator materials.

10.
Nano Lett ; 11(11): 4601-6, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21985530

RESUMO

We report on the first controlled alternation between memory and threshold resistance switching (RS) in single Ni/NiO core-shell nanowires by setting the compliance current (I(CC)) at room temperature. The memory RS is triggered by a high I(CC), while the threshold RS appears by setting a low I(CC), and the Reset process is achieved without setting a I(CC). In combination with first-principles calculations, the physical mechanisms for the memory and threshold RS are fully discussed and attributed to the formation of an oxygen vacancy (Vo) chain conductive filament and the electrical field induced breakdown without forming a conductive filament, respectively. Migration of oxygen vacancies can be activated by appropriate Joule heating, and it is energetically favorable to form conductive chains rather than random distributions due to the Vo-Vo interaction, which results in the nonvolatile switching from the off- to the on-state. For the Reset process, large Joule heating reorders the oxygen vacancies by breaking the Vo-Vo interactions and thus rupturing the conductive filaments, which are responsible for the switching from on- to off-states. This deeper understanding of the driving mechanisms responsible for the threshold and memory RS provides guidelines for the scaling, reliability, and reproducibility of NiO-based nonvolatile memory devices.


Assuntos
Dispositivos de Armazenamento em Computador , Armazenamento e Recuperação da Informação/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Níquel/química , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
11.
ACS Nano ; 16(10): 17347-17355, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36153977

RESUMO

van der Waals heterojunctions with tunable polarity are being actively explored for more Moore and more-than-Moore device applications, as they can greatly simplify circuit design. However, inadequate control over the multifunctional operational states is still a challenge in their development. Here, we show that a vertically stacked InSe/SnS2 van der Waals heterojunction exhibits type-II band alignment, and its polarity can be tuned by an external electric field and by the wavelength and intensity of an illuminated light source. Moreover, such SnS2/InSe diodes are self-powered broadband photodetectors with good performance. The self-powered performance can be further enhanced significantly with gas adsorption, and the device can be quickly restored to the state before gas injection using a gate voltage pulse. Our results suggest a way to achieve and design multiple functions in a single device with multifield coupling of light, electrical field, gas, or other external stimulants.

12.
J Pharm Biomed Anal ; 220: 115030, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36088810

RESUMO

A negatively-charged tetraphenylethylene derivative (TPE-SE) was designed and synthesized as turn-on fluorescent sensor for berberine chloride (BBC) detection in aqueous solution. The fluorescent property and detection mechanism were elucidated by UV-vis absorption spectra, photoluminescence spectra, dynamic light scattering experiments. The results reveal that the BBC can lead to aggregation-induced emission of TPE-SE due to the electrostatic interactions, endowing TPE-SE with excellent turn-on detecting ability, high selectivity and sensitivity to BBC. The detection limit is as low as 6.58 × 10-6M. These results should be applicable to fabricate special turn-on fluorescent sensors towards various antibiotics, and it is crucially important for achieving reasonable control and intake of small biomolecules.


Assuntos
Berberina , Alcanossulfonatos , Antibacterianos , Cloretos , Corantes Fluorescentes , Espectrometria de Fluorescência/métodos , Estilbenos , Água
13.
Nanotechnology ; 22(37): 375201, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21852722

RESUMO

A seven orders of magnitude increase in the current on/off ratio of ZnO nanowire field-effect transistors (FETs) after Ga( + ) irradiation was observed. Transmission electron microscopy characterization revealed that the surface crystal quality of the ZnO nanowire was improved via the Ga( + ) treatment. The Ga( + ) irradiation efficiently reduces chemisorption effects and decreases oxygen vacancies in the surface layer. The enhanced performance of the nanowire FET was attributed to the decrease of surface trapped electrons and the decrease in carrier concentration.

14.
Nano Lett ; 10(4): 1132-6, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20349971

RESUMO

We have probed one antiferromagnetic (AF) antiphase boundary (APB) and a single Fe(3)O(4) domain using nanogap contacts. Our experiments directly demonstrate that, in the case of probing one AF-APB, a large magnetoresistance (MR), high resistivity, and a high saturation field are observed as compared with the case of probing a single Fe(3)O(4) domain. The shape of the temperature-dependent MR curves is also found to differ between the single domain and one of the AF-APB measurements, with a characteristic strong temperature dependence for the single domain and temperature independence for the one AF-APB case. We argue that these observations are indicative of profound changes in the electronic transport across APBs. The investigated APB defects increase the activation energy and disturb the long-range charge ordering of monodomain Fe(3)O(4).


Assuntos
Compostos Férricos/química , Magnetismo , Nanoestruturas/química , Nanotecnologia/métodos , Tamanho da Partícula
15.
ACS Appl Mater Interfaces ; 13(51): 61799-61808, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34927430

RESUMO

Recombination of photogenerated electron-hole pairs dominates the photocarrier lifetime and then influences the performance of photodetectors and solar cells. In this work, we report the design and fabrication of band-aligned van der Waals-contacted photodetectors with atomically sharp and flat metal-semiconductor interfaces through transferred metal integration. A unity factor α is achieved, which is essentially independent of the wavelength of the light, from ultraviolet to near-infrared, indicating effective suppression of charge recombination by the device. The short-circuit current (0.16 µA) and open-circuit voltage (0.72 V) of the band-aligned van der Waals-contacted devices are at least 1 order of magnitude greater than those of band-aligned deposited devices and 2 orders of magnitude greater than those of non-band-aligned deposited devices. High responsivity, detectivity, and polarization sensitivity ratio of 283 mA/W, 6.89 × 1012 cm Hz1/2 W-1, and 3.05, respectively, are also obtained for the device at zero bias. Moreover, the efficient suppression of charge recombination in our air-stable self-powered photodetectors also results in a fast response speed and leads to polarization-sensitive performance.

16.
ACS Appl Mater Interfaces ; 13(39): 47198-47207, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34546715

RESUMO

The fabrication of graphene/SnS2 van der Waals photodetectors and their photoelectrical properties are systematically investigated. It was found that a dry transferred graphene/SnS2 van der Waals heterostructure had a broadband sensing range from ultraviolet (365 nm) to near-infrared (2.24 µm) and respective improved responsivities and photodetectivities of 7.7 × 103 A/W and 8.9 × 1013 jones at 470 nm and 2 A/W and 1.8 × 1010 jones at 1064 nm. Moreover, positive and negative photoconductance effects were observed when the photodetectors were illuminated by photon sources with energies greater and smaller than the bandgap of SnS2, respectively. The photoresponsivity (R) versus incident power density (P) follows the empirical law R ∝ Pinß, with ß > -1 for positive photoconductance effects and ß < -1 for negative photoconductance effects. On the basis of the Fowler-Nordheim tunneling model and a Poisson and drift-diffusion simulation, we show quantitatively that the barrier height and barrier width of the heterostructure photodetector could be controlled by a laser and an external electrical field through a photogating effect generated by carriers trapped at the interface, which could be used to tune the separation and transport of photogenerated carriers. Our results may be useful for the design of high performance van der Waals heterojunction photodetectors.

17.
Nat Commun ; 12(1): 2018, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795697

RESUMO

There is an emergent demand for high-flexibility, high-sensitivity and low-power strain gauges capable of sensing small deformations and vibrations in extreme conditions. Enhancing the gauge factor remains one of the greatest challenges for strain sensors. This is typically limited to below 300 and set when the sensor is fabricated. We report a strategy to tune and enhance the gauge factor of strain sensors based on Van der Waals materials by tuning the carrier mobility and concentration through an interplay of piezoelectric and photoelectric effects. For a SnS2 sensor we report a gauge factor up to 3933, and the ability to tune it over a large range, from 23 to 3933. Results from SnS2, GaSe, GeSe, monolayer WSe2, and monolayer MoSe2 sensors suggest that this is a universal phenomenon for Van der Waals semiconductors. We also provide proof of concept demonstrations by detecting vibrations caused by sound and capturing body movements.

18.
IUCrJ ; 7(Pt 5): 913-919, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939283

RESUMO

Charge density waves spontaneously breaking lattice symmetry through periodic lattice distortion, and electron-electron and electron-phonon inter-actions, can lead to a new type of electronic band structure. Bulk 2H-TaS2 is an archetypal transition metal dichalcogenide supporting charge density waves with a phase transition at 75 K. Here, it is shown that charge density waves can exist in exfoliated monolayer 2H-TaS2 and the transition temperature can reach 140 K, which is much higher than that in the bulk. The degenerate breathing and wiggle modes of 2H-TaS2 originating from the periodic lattice distortion are probed by optical methods. The results open an avenue to investigating charge density wave phases in two-dimensional transition metal dichalcogenides and will be helpful for understanding and designing devices based on charge density waves.

19.
RSC Adv ; 10(35): 20921-20927, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517749

RESUMO

GeSn is a group IV alloy material with a narrow bandgap, making it favorable for applications in sensing and imaging. However, strong surface carrier recombination is a limiting factor. To overcome this, we investigate the broadband photoelectrical properties of graphene integrated with doped GeSn, from the visible to the near infrared. It is found that photo-generated carriers can be separated and transported with a higher efficiency by the introduction of the graphene layer. Considering two contrasting arrangements of graphene on p-type and n-type GeSn films, photocurrents were suppressed in graphene/p-type GeSn heterostructures but enhanced in graphene/n-type GeSn heterostructures when compared with control samples without graphene. Moreover, the enhancement (suppression) factor increases with excitation wavelength but decreases with laser power. An enhancement factor of 4 is achieved for an excitation wavelength of 1064 nm. Compared with previous studies, it is found that our graphene/n-type GeSn based photodetectors provide a much wider photodetection range, from 532 nm to 1832 nm, and maintain comparable responsivity. Our experimental findings highlight the importance of the induced bending profile on the charge separation and provides a way to design high performance broadband photodetectors.

20.
ACS Appl Mater Interfaces ; 12(23): 26746-26754, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32426961

RESUMO

Layered materials are highly attractive in gas sensor research due to their extraordinary electronic and physicochemical properties. The development of cheaper and faster room-temperature detectors with high sensitivities especially in the parts per billion level is the main challenge in this rapidly developing field. Here, we show that sensitivity to NO2 (S) can be greatly improved by at least two orders of magnitude using an n-type electrode metal. Unconventionally for such devices, the ln(S) follows the classic Langmuir isotherm model rather than S as is for a p-type electrode metal. Excellent device sensitivities, as high as 13,000% for 9 ppm and 97% for 1 ppb NO2, are achieved with Mn electrodes at room temperature, which can be further tuned and enhanced with the application of a bias. Long-term stability, fast recovery, and strong selectivity toward NO2 are also demonstrated. Such impressive features provide a real solution for designing a practical high-performance layered material-based gas sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA