Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(Suppl 10): 633, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474163

RESUMO

BACKGROUND: The correct establishment of the barcode classification system for fish can facilitate biotaxonomists to distinguish fish species, and it can help the government to verify the authenticity of the ingredients of fish products or identify unknown fish related samples. The Cytochrome c oxidation I (COI) gene sequence in the mitochondria of each species possesses unique characteristics, which has been widely used as barcodes in identifying species in recent years. Instead of using COI gene sequences for primer design, flanking tRNA segments of COI genes from 2618 complete fish mitochondrial genomes were analyzed to discover suitable primers for fish classification at taxonomic family level. The minimal number of primer sets is designed to effectively distinguish various clustered groups of fish species for identification applications. Sequence alignment analysis and cross tRNA segment comparisons were applied to check and ensure the primers for each cluster group are exclusive. RESULTS: Two approaches were applied to improve primer design and re-cluster fish species. The results have shown that exclusive primers for 2618 fish species were successfully discovered through in silico analysis. In addition, we applied sequence alignment analysis to confirm that each pair of primers can successfully identify all collected fish species at the taxonomic family levels. CONCLUSIONS: This study provided a practical strategy to discover unique primers for each fishery species and a comprehensive list of exclusive primers for extracting COI barcode sequences of all known fishery species. Various applications of verification of fish products or identification of unknown fish species could be effectively achieved.


Assuntos
RNA de Transferência , RNA de Transferência/genética
2.
BMC Genomics ; 22(1): 200, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752587

RESUMO

BACKGROUND: Tilapia (Oreochromis niloticus) cultures are frequently infected by Vibrio vulnificus, causing major economic losses to production units. Previously, tilapia expressing recombinant delta-5 desaturase and delta-6 desaturase (D56) were found to be resistant to V. vulnificus infection. In this report, we profile the D56-mediated molecular changes underlying this resistance in tilapia. A comparative transcriptome analysis was performed on V. vulnificus-infected wild-type and D56-transgenic tilapia using Illumina's sequencing-by-synthesis approach. Gene enrichment analysis on differentially expressed unigenes was performed, and the expression patterns were validated by real-time PCR. RESULTS: Comparative transcriptome analysis was performed on RNA-sequence profiles obtained from wild-type and D56-transgenic tilapia at 0, 6 and 24 h post-infection with V. vulnificaus. GO and KEGG gene enrichment analyses showed that D56 regulates several pathways and genes, including fatty acid (FA) metabolism associated, and inflammatory and immune response. Expression of selected FA metabolism-associated, inflammatory and immune responsive genes was validated by qPCR. The inflammatory and immune responsive genes that are modulated by FA-associated D56 likely contribute to the enhanced resistance against V. vulnificus infection in Tilapia. CONCLUSIONS: Transcriptome profiling and filtering for two-fold change variation showed that 3795 genes were upregulated and 1839 genes were downregulated in D56-transgenic tilapia. These genes were grouped into pathways, such as FA metabolism, FA elongation, FA biosynthesis, biosynthesis of unsaturated FA, FA degradation, inflammation, immune response, and chemokines. FA-associated genes and immune-related genes were modulated by D56 at 6 h and 24 h post infection with V. vulnificus. The expression patterns of FA-related genes, inflammatory genes, antimicrobial peptide genes and immune responsive genes at 0, 3, 6, 12, 24 and 48 h post-infection suggests these genes are involved in the enhanced resistance of D56 transgenic tilapia to V. vulnificus.


Assuntos
Ciclídeos , Doenças dos Peixes , Tilápia , Vibrioses , Vibrio vulnificus , Animais , Ciclídeos/genética , Doenças dos Peixes/genética , Perfilação da Expressão Gênica , Tilápia/genética , Transcriptoma , Vibrioses/genética , Vibrioses/veterinária , Vibrio vulnificus/genética
3.
BMC Genomics ; 22(Suppl 2): 116, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058977

RESUMO

BACKGROUND: A conformational epitope (CE) is composed of neighboring amino acid residues located on an antigenic protein surface structure. CEs bind their complementary paratopes in B-cell receptors and/or antibodies. An effective and efficient prediction tool for CE analysis is critical for the development of immunology-related applications, such as vaccine design and disease diagnosis. RESULTS: We propose a novel method consisting of two sequential modules: matching and prediction. The matching module includes two main approaches. The first approach is a complete sequence search (CSS) that applies BLAST to align the sequence with all known antigen sequences. Fragments with high epitope sequence identities are identified and the predicted residues are annotated on the query structure. The second approach is a spiral vector search (SVS) that adopts a novel surface spiral feature vector for large-scale surface patch detection when queried against a comprehensive epitope database. The prediction module also contains two proposed subsystems. The first system is based on knowledge-based energy and geometrical neighboring residue contents, and the second system adopts combinatorial features, including amino acid contents and physicochemical characteristics, to formulate corresponding geometric spiral vectors and compare them with all spiral vectors from known CEs. An integrated testing dataset was generated for method evaluation, and our two searching methods effectively identified all epitope regions. The prediction results show that our proposed method outperforms previously published systems in terms of sensitivity, specificity, positive predictive value, and accuracy. CONCLUSIONS: The proposed method significantly improves the performance of traditional epitope prediction. Matching followed by prediction is an efficient and effective approach compared to predicting directly on specific surfaces containing antigenic characteristics.


Assuntos
Antígenos , Epitopos de Linfócito B , Bases de Conhecimento , Proteínas de Membrana , Conformação Molecular
4.
Int J Mol Sci ; 22(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063300

RESUMO

The BH3-only molecule Bad regulates cell death via its differential protein phosphorylation, but very few studies address its effect on early embryonic development in vertebrate systems. In this work, we examined the novel role of zebrafish Bad in the initial programmed cell death (PCD) for brain morphogenesis through reducing environmental stress and cell death signaling. Bad was considered to be a material factor that because of the knockdown of Bad by morpholino oligonucleotides, PCD was increased and the reactive oxygen species (ROS) level was enhanced, which correlated to trigger a p53/caspase-8 involving cell death signaling. This Bad knockdown-mediated environmental stress and enhanced cell dying can delay normal cell migration in the formation of the three germ layers, especially the ectoderm, for further brain development. Furthermore, Bad defects involved in three-germ-layers development at 8 hpf were identified by in situ hybridization approach on cyp26, rtla, and Sox17 pattern expression markers. Finally, the Bad knockdown-induced severely defected brain was examined by tissue section from 24 to 48 h postfertilization (hpf), which correlated to induce dramatic malformation in the hindbrain. Our data suggest that the BH3-only molecule Bad regulates brain development via controlling programmed cell death on overcoming environmental stress for reducing secondary cell death signaling, which suggests that correlates to brain developmental and neurological disorders in this model system.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Desenvolvimento Embrionário , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Apoptose , Encéfalo/patologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes p53 , Morfolinos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteína de Morte Celular Associada a bcl/genética
5.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681875

RESUMO

Compensatory hepatocyte proliferation and other liver regenerative processes are activated to sustain normal physiological function after liver injury. A major mitogen for liver regeneration is hepatocyte growth factor (HGF), and a previous study indicated that progranulin could modulate c-met, the receptor for HGF, to initiate hepatic outgrowth from hepatoblasts during embryonic development. However, a role for progranulin in compensatory hepatocyte proliferation has not been shown previously. Therefore, this study was undertaken to clarify whether progranulin plays a regulatory role during liver regeneration. To this end, we established a partial hepatectomy regeneration model in adult zebrafish that express a liver-specific fluorescent reporter. Using this model, we found that loss of progranulin A (GrnA) function by intraperitoneal-injection of a Vivo-Morpholino impaired and delayed liver regeneration after partial hepatectomy. Furthermore, transcriptome analysis and confirmatory quantitative real-time PCR suggested that cell cycle progression and cell proliferation was not as active in the morphants as controls, which may have been the result of comparative downregulation of the HGF/c-met axis by 36 h after partial hepatectomy. Finally, liver-specific overexpression of GrnA in transgenic zebrafish caused more abundant cell proliferation after partial hepatectomy compared to wild types. Thus, we conclude that GrnA positively regulates HGF/c-met signaling to promote hepatocyte proliferation during liver regeneration.


Assuntos
Hepatectomia/métodos , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/citologia , Regeneração Hepática , Progranulinas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Fator de Crescimento de Hepatócito/genética , Hepatócitos/metabolismo , Organogênese , Progranulinas/genética , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
BMC Bioinformatics ; 21(1): 174, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366294

RESUMO

BACKGROUND: Transcriptome analysis by next-generation sequencing has become a popular technique in recent years. This approach is quite suitable for non-model organism study, as de novo assembly is independent of prior genomic sequences of organisms. De novo sequencing has benefited many studies on commercially important fish species. However, to understand the functions of these assembled sequences, they still need to be annotated with existing sequence databases. By combining Basic Local Alignment Search Tool (BLAST) and Gene Ontology analysis, we were able to identify homologous sequences of assembled sequences and describe their characteristics using pre-defined tags for each gene, though the above conventional annotation results obtained for non-model assembled sequences was still associated with a lack of pre-defined tags and poorly documented records in the database. RESULTS: We introduced Blast2Fish, a novel approach for performing functional enrichment analysis on non-model teleost fish transcriptome data. The Blast2Fish pipeline was designed to be a reference-based enrichment method. Instead of annotating the BLAST single top hit by a pre-defined gene-to-tag database, we included 500 hits to search related PubMed articles and parse biological terms. These descriptive terms were then sorted and recorded as annotations for the query. The results showed that Blast2Fish was capable of providing meaningful annotations on immunology topics for non-model fish transcriptome analysis. CONCLUSION: Blast2Fish provides a novel approach for annotating sequences of non-model fish. The reference-based strategy allows annotation to be performed without pre-defined tags for each gene. This method strongly benefits non-model teleost fish studies for gene functional enrichment analysis.


Assuntos
Biologia Computacional/métodos , Proteínas de Peixes/genética , Peixes/genética , Anotação de Sequência Molecular/métodos , Animais , Bases de Dados de Ácidos Nucleicos , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Perfilação da Expressão Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Software , Transcriptoma
7.
Fish Shellfish Immunol ; 97: 608-616, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31614198

RESUMO

Polyunsaturated fatty acids (PUFAs) play important roles in organisms, including the structure and liquidity of cell membranes, anti-oxidation and anti-inflammation. Very little has been done in terms of the effect of PUFAs on cell death, especially on DNA virus. In this study, we demonstrated that the infectious spleen and kidney necrosis virus (ISKNV) can induce host cell death via the apoptotic cell death pathway, which correlated to modulation by PUFAs in grouper fin cell line (GF-1) cells. We screened the PUFAs, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for the ability of different dosages to prevent cell death in GF-1 cells with ISKNV infection. In the results, each 10 µM of DHA and EPA treatment enhanced host cell viability up to 80% at day 5 post-infection. Then, in Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay, DHA- and EPA-treated groups reduced TUNEL positive signals 50% in GF-1 cells with ISKNV infection. Then, through studies of the mechanism of cell death, we found that ISKNV can induce both the Bax/caspase-3 and Fas/caspase-8/tBid death signaling pathways in GF-1 cells, especially at day 5 post-infection. Furthermore, we found that DHA and EPA treatment can either prevent caspase-3 activation on 17-kDa form cleavage or Bid cleaved (15-kDa form) for activation by caspase-8, apparently. On the other hand, the anti-apoptotic gene Bcl-2 was upregulated 0.3-fold and 0.15-fold at day 3 and day 5, respectively, compared to ISKNV-infected and DHA-treated cells; that this did not happen in the EPA-treated group showed that different PUFAs trigger different signals. Finally, ISKNV-infected GF-1 cells treated with either DHA or EPA showed a 5-fold difference in viral titer at day 5. Taken together, these results suggest that optimal PUFA treatment can affect cell death signaling through both the intrinsic and extrinsic death pathways, reducing viral expression and viral titer in GF-1 cells. This finding may provide insight in DNA virus infection and control.


Assuntos
Bass/imunologia , Morte Celular/efeitos dos fármacos , Infecções por Vírus de DNA/veterinária , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Doenças dos Peixes/tratamento farmacológico , Iridoviridae/fisiologia , Nadadeiras de Animais , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/virologia , Transdução de Sinais/efeitos dos fármacos
8.
BMC Bioinformatics ; 20(Suppl 7): 192, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074372

RESUMO

BACKGROUND: The Iridoviridae family is categorized into five genera and clustered into two subfamilies: Alphairidovirinae includes Lymphocystivirus, Ranavirus (GIV), and Megalocystivirus (TGIV), which infect vertebrate hosts and Betairidovirinae includes Iridovirus and Chloriridovirus, which infect invertebrate hosts. Clustered Iridoviridae subfamilies possess host-specific characteristics, which can be considered as exclusive features for in-silico prediction of effective epitopes for vaccine development. A voting mechanism-based linear epitope (LE) prediction system was applied to identify and endorse LE candidates with a minimum length requirement for each clustered subfamily RESULTS: The experimental results showed that four conserved epitopes among the Iridovirideae family, one exclusive epitope for invertebrate subfamily and two exclusive epitopes for vertebrate family were predicted. These predicted LE candidates were further validated by ELISA assays for evaluating the strength of antigenicity and cross antigenicity. The conserved LEs for Iridoviridae family reflected high antigenicity responses for the two subfamilies, while exclusive LEs reflected high antigenicity responses only for the host-specific subfamily CONCLUSIONS: Host-specific characteristics are important features and constraints for effective epitope prediction. Our proposed voting mechanism based system provides a novel approach for in silico LE prediction prior to vaccine development, and it is especially powerful for analyzing antigen sequences with exclusive features between two clustered groups.


Assuntos
Infecções por Vírus de DNA/imunologia , Epitopos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Invertebrados/imunologia , Iridoviridae/imunologia , Vertebrados/imunologia , Proteínas Virais/imunologia , Animais , Infecções por Vírus de DNA/virologia , Invertebrados/virologia , Iridoviridae/classificação , Iridoviridae/genética , Vertebrados/virologia
9.
Biochem Biophys Res Commun ; 515(4): 706-711, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182280

RESUMO

In our previous study, the novel GRN-41 peptide generated from alternative splicing of the Mozambique tilapia PGRN1 gene was identified to be a potent peptide that protected against V. vulnificus in the transgenic zebrafish model by modulating innate immune-related genes. In this study, the anti-bacterial activities of synthetic Mozambique tilapia GRN-41 peptide (OmGRN-41) against various bacterial pathogens were investigated. The results showed that OmGRN-41 had bactericidal activity against Vibrio species, including V. vulnificus, V. alginolyticus, and V. harveyi, but exhibited bacteriostatic activity against V. parahaemolyticus. OmGRN-41 maintained bactericidal activity (64 µM) against V. vulnificus at pH 2 to pH 10 or after heat treatment for 1 h at high temperatures between 40 °C and 100 °C. TEM observations revealed that the outer membrane of V. vulnificus was disrupted by OmGRN-41, leading to morphological rupture and loss of cytoplasmic contents. Additionally, little hemolytic activity against tilapia and sheep erythrocytes was detected after treatment with 128 µM OmGRN-41. OmGRN-41 can effectively enhance the survival of Nile tilapia infected by V. vulnificus. Our results suggest that the OmGRN-41 is a novel antimicrobial peptide possessing bactericidal activity, especially against Vibrio species. These results indicate that OmGRN-41 can be applied in human Vibriosis treatment and has the potential to defend against Vibrio spp. infection in critical aquaculture organisms.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Tilápia/metabolismo , Vibrioses/tratamento farmacológico , Vibrio/efeitos dos fármacos , Processamento Alternativo , Animais , Granulinas , Hemólise , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Ovinos , Temperatura
10.
Fish Shellfish Immunol ; 90: 141-149, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31055020

RESUMO

Metamorphosis is a transformation process in larval development associated with changes in morphological and physiological features, including the immune system. The gastrointestinal tract harbors a plethora of bacteria, which might affect the digestion and absorption of nutrients, immunity, and gut-brain crosstalk in the host. In this study, we have performed metagenomic and transcriptomic analyses on the intestines of grouper at the pre-, mid- and post-metamorphosis stages. The sequencing data of 16S rRNA gene showed drastic changes in the microbial communities at different developmental stages. The transcriptomic data revealed that the leukocyte transendothelial migration and the phagosome pathways might play important roles in mediating immunity in grouper at the three developmental stages. This information will increase our understanding of the metamorphosis process in grouper larvae, and shed light on the development of antimicrobial strategy during larval development.


Assuntos
Bass/genética , Bass/microbiologia , Microbioma Gastrointestinal/fisiologia , Imunidade Inata/genética , Transcriptoma/imunologia , Animais , Bass/crescimento & desenvolvimento , Bass/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Metagenômica , Metamorfose Biológica/genética , Metamorfose Biológica/imunologia
11.
J Cell Physiol ; 233(4): 2681-2692, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28833090

RESUMO

CRSBP-1 (mammalian LYVE-1) is a membrane glycoprotein highly expressed in lymphatic endothelial cells (LECs). It has multiple ligands, including hyaluronic acid (HA) and growth factors/cytokines (e.g., PDGF-BB and VEGF-A) containing CRS motifs (clusters of basic amino-acid residues). The ligand binding activities are mediated by Link module and acidic-amino-acid-rich (AAAR) domains, respectively. These CRSBP-1/LYVE-1 ligands have been shown to induce opening of lymphatic intercellular junctions in LEC monolayers and in lymphatic vessels in wild-type mice. We hypothesize that CRSBP-1/LYVE-1 ligands, particularly CRS-containing growth factors/cytokines, are secreted by immune and cancer cells for lymphatic entry during adaptive immune responses and lymphatic metastasis. We have looked into the origin of the Link module and AAAR domain of LYVE-1 in evolution and its association with the development of lymph nodes and efficient adaptive immunity. Lymph nodes represent the only major recent innovation of the adaptive immune systems in evolution particularly to mammals and bird. Here we demonstrate that the development of the LYVE-1 gene with the AAAR domain in evolution is associated with acquisition of lymph nodes and adaptive immunity. LYVE-1 from other species, which have no lymph nodes, lack the AAAR domain and efficient adaptive immunity. Synthetic CRSBP-1 ligands PDGF and VEGF peptides, which contain the CRS motifs of PDGF-BB and VEGF-A, respectively, specifically bind to CRSBP-1 but do not interact with either PDGFßR or VEGFR2. These peptides function as adjuvants by enhancing adaptive immunity of pseudorabies virus (PRV) vaccine in pigs. These results support the notion that LYVE-1 is involved in adaptive immunity in mammals.


Assuntos
Imunidade Adaptativa , Aminoácidos Acídicos/metabolismo , Evolução Molecular , Linfonodos/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Ligantes , Linfonodos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Peptídeos/farmacologia , Filogenia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Domínios Proteicos , Vacinas contra Pseudorraiva/imunologia , Alinhamento de Sequência , Tubarões , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Sus scrofa , Fator A de Crescimento do Endotélio Vascular/farmacologia , Peixe-Zebra
12.
Fish Shellfish Immunol ; 75: 74-90, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408220

RESUMO

Progranulin (PGRN) is a multi-functional growth factor that mediates cell proliferation, survival, migration, tumorigenesis, wound healing, development, and anti-inflammation activity. A novel alternatively spliced transcript from the short-form PGRN1 gene encoding a novel, secreted GRN peptide composed of 20-a.a. signal peptide and 41-a.a. GRN named GRN-41 was identified to be abundantly expressed in immune-related organs including spleen, head kidney, and intestine of Mozambique tilapia. The expression of GRN-41 and PGRN1 were further induced in the spleen of tilapia challenged with Vibrio vulnificus at 3 h post infection (hpi) and 6 hpi, respectively. In this study, we established three transgenic zebrafish lines expressing the secreted GRN-41, GRN-A and PGRN1 of Mozambique tilapia specifically in muscle. The relative percent of survival (RPS) was enhanced in adult transgenic zebrafish expressing tilapia GRN-41 (68%), GRN-A (32%) and PGRN1 (36%) compared with control transgenic zebrafish expressing AcGFP after challenge with V. vulnificus. It indicates tilapia GRN-41 is a potent peptide against V. vulnificus infection. The secreted tilapia GRN-41 can induce the expression of innate immune response-related genes, such as TNFa, TNFb, IL-8, IL-1ß, IL-6, IL-26, IL-21, IL-10, complement C3, lysozyme (Lyz) and the hepatic antimicrobial peptide hepcidin (HAMP), in adult transgenic zebrafish without V. vulnificus infection. The tilapia GRN-41 peptide can enhance the innate immune response by further elevating TNFb, IL-1ß, IL-8, IL-6, and HAMP expression in early responsive time to the V. vulnificus challenge in transgenic zebrafish. Our results suggest that the novel GRN-41 peptide generated from alternative splicing of the tilapia PGRN1 gene is a potent peptide that defends against V. vulnificus in the transgenic zebrafish model by modulation of innate immunity.


Assuntos
Doenças dos Peixes/imunologia , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Tilápia/genética , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Longevidade , Masculino , Progranulinas , Vibrioses/imunologia , Vibrio vulnificus/fisiologia
13.
Biochem Biophys Res Commun ; 490(3): 1052-1058, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28668389

RESUMO

Liver cancer is the second leading cause of death worldwide. As such, establishing animal models of the disease is important for both basic and translational studies that move toward developing new therapies. Gankyrin is a critical oncoprotein in the genetic control of liver pathology. In order to evaluate the oncogenic role of gankyrin without cancer cell inoculation and drug treatment, we overexpressed gankyrin under the control of the fabp10a promoter. A Tet-Off system was used to drive expression in hepatocytes. At seven to twelve months of age, gankyrin transgenic fish spontaneously incurred persistent hepatocyte damage, steatosis, cholestasis, cholangitis, fibrosis and hepatic tumors. The tumors were both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). ICC is the second most frequent primary liver cancer in human patients and the first to develop in this tumor model. We further investigated the role of complement C3, a central molecule of the complement system, and found the expression levels of both in mRNA and protein are decreased during tumorigenesis. Together, these findings suggest that gankyrin can promote malignant transformation of liver cells in the context of persistent liver injury. This transformation may be related to compensatory proliferation and the inflammatory microenvironment. The observed decrease in complement C3 may allow transforming cells to escape coordinated induction of the immune response. Herein, we demonstrate an excellent zebrafish model for liver cancers that will be useful for studying the molecular mechanisms of tumorgenesis.


Assuntos
Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Neoplasias Hepáticas/genética , Fígado/patologia , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas/genética , Regulação para Cima , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Regulação Neoplásica da Expressão Gênica , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia
14.
Apoptosis ; 21(4): 443-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26833308

RESUMO

Previous studies have shown that GSIV induces apoptotic cell death through upregulation of the pro-apoptotic genes Bax and Bak in Grouper fin cells (GF-1 cells). However, the role of viral genome-encoded protein(s) in this death process remains unknown. In this study, we demonstrated that the Giant seaperch iridovirus (GSIV) genome encoded a serine/threonine kinase (ST kinase) protein, and induced apoptotic cell death via a p53-mediated Bax upregulation approach and a downregulation of Bcl-2 in fish cells. The ST kinase expression profile was identified through Western blot analyses, which indicated that expression started at day 1 h post-infection (PI), increased up to day 3, and then decreased by day 5 PI. This profile indicated the role of ST kinase expression during the early and middle phases of viral replication. We then cloned the ST kinase gene and tested its function in fish cells. The ST kinase was transiently expressed and used to investigate possible novel protein functions. The transient expression of ST kinase in GF-1 cells resulted in apoptotic cell features, as revealed with Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) assays and Hoechst 33258 staining at 24 h (37 %) and 48 h post-transfection (PT) (49 %). Then, through studies on the mechanism of cell death, we found that ST kinase overexpression could upregulate the anti-stress gene p53 and the pro-apoptotic gene Bax at 48 h PT. Interestingly, this upregulation of p53 and Bax also correlated to alterations in the mitochondria function that induced loss of mitochondrial membrane potential (MMP) and activated the initiator caspase-9 and the effector caspase-3 in the downstream. Moreover, when the p53-dependent transcriptional downstream gene was blocked by a specific transcriptional inhibitor, it was found that pifithrin-α not only reduced Bax expression, but also averted cell death in GF-1 cells during the ST kinase overexpression. Taken altogether, these results suggested that aquatic GSIV ST kinase could induce apoptosis via upregulation of p53 and Bax expression, resulting in mitochondrial disruption, which activated a downstream caspases-mediated cell death pathway.


Assuntos
Apoptose/fisiologia , Iridovirus/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Proteína X Associada a bcl-2/biossíntese , Animais , Apoptose/genética , Bass , Benzotiazóis/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Ativação Enzimática , Marcação In Situ das Extremidades Cortadas , Iridovirus/enzimologia , Iridovirus/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Tolueno/análogos & derivados , Tolueno/farmacologia
15.
J Biomed Sci ; 23: 31, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924789

RESUMO

BACKGROUND: Yin Yang 1 (YY1) is a ubiquitously expressed GLI-Kruppel zinc finger-containing transcriptional regulator. YY1 plays a fundamental role in normal biologic processes such as embryogenesis, differentiation, and cellular proliferation. YY1 effects on the genes involved in these processes are mediated via initiation, activation, or repression of transcription depending upon the context in which it binds. The role of the multifunctional transcription factor Yin Yang 1 (YY1) in tissue development is poorly understood. In the present, we investigated YY1a role in developing zebrafish on PSR-mediated apoptotic cell engulfment during organic morphogenesis. RESULTS: YY1a is first expressed 0.5 h post-fertilization (hpf), in the whole embryo 12 hpf, and in brain, eyes, and heart 72 hpf by in situ hybridization assay. The nucleotide sequence of zebrafish YY1a transcription factor (clone zfYY1a; HQ 166834) was found to be similar to that of zebrafish YY1a (99 % sequence identity; NM 212617). With the loss-of-function assay, YY1a knockdown by a morpholino oligonucleotide led to downregulation of the phosphatidylserine engulfing receptor zfPSR during embryonic segmentation and to the accumulation of a large number of dead apoptotic cells throughout the entire early embryo, especially in the posterior area. Up to 24 hpf, these cells interfered with embryonic cell migration and cell-cell interactions that normally occur in the brain, heart, eye, and notochord. Finally, with gain-of-function assay, defective morphants could be rescued by injecting both YY1a mRNA and PSR mRNA and trigger resumption of normal development. CONCLUSIONS: Taken together, our results suggest that YY1a regulates PS receptor expression that linked to function of PSR-phagocyte mediated apoptotic cell engulfment during development, especially the development of organs such as the brain and heart. YY1a/PSR-mediated engulfing system may involve in diseases.


Assuntos
Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/embriologia , Coração/embriologia , Receptores de Superfície Celular/biossíntese , Fator de Transcrição YY1/deficiência , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Encéfalo/anormalidades , Regulação para Baixo , Técnicas de Silenciamento de Genes , Receptores de Superfície Celular/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
16.
J Biomed Sci ; 22: 103, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26572495

RESUMO

BACKGROUND: Highly desaturated n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are synthesized by desaturases and elongase. They exert hepatoprotective effects to prevent alcoholic fatty liver syndrome or cholestatic liver injury. However, it is unclear how n-3 PUFAs improve immune function in liver. Vibrio vulnificus, a gram-negative bacterial pathogen, causes high mortality of aquaculture fishes upon infection. Humans can become infected with V. vulnificus through open wounds or by eating raw seafood, and such infections may result in systemic septicemia. Moreover, patients with liver diseases are vulnerable to infection, and are more likely than healthy persons to present with liver inflammation following infection. This study quantified n-3 PUFAs and their anti-bacterial effects in Fadsd6 and Elvol5a transgenic zebrafish. RESULTS: Two transgenic zebrafish strains with strong liver specific expression of Fadsd6 and Elvol5a (driven by the zebrafish Fabp10 promoter) were established using the Tol2 system. Synthesis of n-3 PUFAs in these strains were increased by 2.5-fold as compared to wild type (Wt) fish. The survival rate in 24 h following challenge with V. vulnificus was 20 % in Wt, but 70 % in the transgenic strains. In addition, the bacteria counts in transgenic fish strains were significantly decreased. The expression levels of pro-inflammatory genes, such as TNF-α, IL-1ß, and NF-κB, were suppressed between 9 and 12 h after challenge. This study confirms the anti-bacterial function of n-3 PUFAs in a transgenic zebrafish model. CONCLUSIONS: Fadsd6 and Elvol5a transgenic zebrafish are more resistant to V. vulnificus infection, and enhance survival by diminishing the attendant inflammatory response.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Doenças dos Peixes/metabolismo , Vibrioses/metabolismo , Vibrioses/veterinária , Vibrio vulnificus , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Ácidos Docosa-Hexaenoicos/genética , Ácido Eicosapentaenoico/genética , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Vibrioses/genética , Peixe-Zebra/genética , Peixe-Zebra/microbiologia
17.
Fish Shellfish Immunol ; 45(2): 848-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26067170

RESUMO

The giant seaperch iridovirus (GSIV) induces host cell apoptosis by a poorly-understood process. In this study, GSIV is shown to upregulate the pro-apoptotic death genes Bax and Bak at the middle replication stage, and factors in the grouper fin cell line (GF-1) are shown to modulate this process. Studying the mechanism of cell death, we found that upregulated, de novo-synthesized Bax and Bak proteins formed heterodimers. This up-regulation process correlated with mitochondrial membrane potential (MMP) loss, increased caspase-3 activity, and increased apoptotic cell death. All effects were diminished by treatment of infected GF-1 cells with the protein synthesis inhibitor cycloheximide. Interestingly, overexpression of the anti-apoptotic gene Bcl-xL also diminished GSIV-induced mitochondria-mediated cell death, increasing host cell viability and decreasing MMP loss at the early replication stage. Our data suggest that GSIV induces GF-1 apoptotic cell death through up-regulation of the pro-apoptotic genes Bax and Bak, which are regulated by Bcl-xL overexpression on mitochondria in GF-1 cells.


Assuntos
Bass , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Regulação para Cima , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Animais , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/metabolismo , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Iridovirus/fisiologia , Potencial da Membrana Mitocondrial , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Fish Shellfish Immunol ; 43(2): 427-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25634257

RESUMO

The type I interferon (IFN) response has been shown to be crucial for the survival of zebrafish larvae infected with nervous necrosis virus (NNV). Teleost type I IFNs can be divided into two groups, based on their cysteine content. While teleost group I IFNs have been extensively studied in terms of their regulation and anti-viral properties, the characteristics of teleost group II IFNs have been relatively unexplored. In this study, we describe the mechanism by which group II IFNs are activated in response to NNV infection in a zebrafish cell line, by focusing on the relationship between type I IFNs and pattern recognition receptors. Expression profile analysis of infected cells by microarray and qPCR revealed signaling activation of two pattern recognition receptors (PRRs): RIG-I like receptors (RLRs) and MyD88-dependent Toll-like receptors (TLRs). Knockdown of retinoic acid-inducible gene I (RIG-I) specifically repressed induction of group II IFNs (IFNϕ2, IFNϕ3) by NNV infection. Furthermore, Ingenuity Pathway Analysis (IPA) was used to demonstrate that RIG-I knockdown results in down-regulation of the inflammatory response in NNV-infected cells. Taken together, our results indicate that RIG-I plays an essential role in zebrafish group II type I IFN induction and the inflammatory response to NNV infection.


Assuntos
Doenças dos Peixes/imunologia , Interferon Tipo I/genética , Nodaviridae/fisiologia , Infecções por Vírus de RNA/veterinária , Receptores de Reconhecimento de Padrão/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Regulação para Baixo , Doenças dos Peixes/virologia , Interferon Tipo I/metabolismo , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
Mar Drugs ; 13(4): 2287-305, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25874924

RESUMO

This study was designed to investigate the antimicrobial activity of two synthetic antimicrobial peptides from an aquatic organism, tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4), in vitro and in a murine sepsis model, as compared with ampicillin, tigecycline, and imipenem. Mice were infected with (NDM-1)-producing K. pneumonia and multi-drug resistant Acinetobacter baumannii, and subsequently treated with TP3, TP4, or antibiotics for different periods of time (up to 168 h). Mouse survival and bacterial colony forming units (CFU) in various organs were measured after each treatment. Toxicity was determined based on observation of behavior and measurement of biochemical parameters. TP3 and TP4 exhibited strong activity against K. pneumonia and A. baumannii in vitro. Administration of TP3 (150 µg/mouse) or TP4 (50 µg/mouse) 30 min after infection with K. pneumonia or A. baumannii significantly increased survival in mice. TP4 was more effective than tigecycline at reducing CFU counts in several organs. TP3 and TP4 were shown to be non-toxic, and did not affect mouse behavior. TP3 and TP4 are able at potentiate anti-Acinetobacter baumannii or anti-Klebsiella pneumonia drug activity, reduce bacterial load, and prevent drug resistance, indicating their potential for use in combating multidrug-resistant bacteria.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Farmacorresistência Bacteriana , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/efeitos adversos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/biossíntese , Comportamento Animal/efeitos dos fármacos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Proteínas de Peixes/efeitos adversos , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Proteínas de Peixes/uso terapêutico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Isoformas de Proteínas/efeitos adversos , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologia , Isoformas de Proteínas/uso terapêutico , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Sepse/tratamento farmacológico , Sepse/microbiologia , Análise de Sobrevida , Tilápia , beta-Lactamases/biossíntese
20.
Fish Physiol Biochem ; 41(2): 449-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25280727

RESUMO

The hepcidin gene is widely expressed in many fish species and functions as an antimicrobial peptide, suggesting that it plays an important role in the innate immune system of fish. In the present study, the Amatitlania nigrofasciata hepcidin gene (AN-hepc) was cloned from the liver and its expression during an immune response was characterized. The results of quantitative PCR and RT-PCR showed that the AN-hepc transcript was most abundant in the liver. The expression of AN-hepc mRNA was significantly increased in the liver, stomach, heart, intestine, gill and muscle but was not significantly altered in the spleen, kidney, brain or skin after lipopolysaccharide challenge. The synthetic AN-hepc peptide showed a wide spectrum of antimicrobial activity in vitro toward gram-positive and gram-negative bacteria. In particular, this peptide demonstrated potent antimicrobial activity against the aquatic pathogens Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, Aeromonas hydrophila and Streptococcus agalactiae. The in vivo bacterial challenge results demonstrated that the synthetic AN-hepc peptide significantly improved the survival rate of S. agalactiae- and V. vulnificus-infected zebrafish. Taken together, these data indicate an important role for AN-hepc in the innate immunity of A. nigrofasciata and suggest its potential application in aquaculture for increasing resistance to disease.


Assuntos
Anti-Infecciosos/farmacologia , Ciclídeos/genética , Regulação da Expressão Gênica/imunologia , Hepcidinas/metabolismo , Hepcidinas/farmacologia , Imunidade Inata/genética , Aeromonas hydrophila/efeitos dos fármacos , Animais , Ciclídeos/imunologia , Clonagem Molecular , Trato Gastrointestinal/metabolismo , Brânquias/metabolismo , Hepcidinas/genética , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Fígado/metabolismo , Músculos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Streptococcus agalactiae/efeitos dos fármacos , Vibrio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA