Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 514, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789922

RESUMO

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Assuntos
Antioxidantes , Peixes , Resveratrol , Animais , Resveratrol/farmacologia , Peixes/metabolismo , Peixes/crescimento & desenvolvimento , Peixes/genética , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nutrientes/metabolismo , Ração Animal/análise , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Dieta/veterinária , Perfilação da Expressão Gênica
2.
Small ; : e2403894, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864207

RESUMO

Theory-guided materials design is an effective strategy for designing catalysts with high intrinsic activity whilst minimizing the usage of expensive metals like platinum. As proof-of-concept, herein it demonstrates that using density functional theory (DFT) calculations and experimental validation that intermetallic PtCo3 alloy nanoparticles offer enhanced electrocatatalytic performance for the oxygen reduction reaction (ORR) compared to Pt nanoparticles. DFT calculations established that PtCo3(111) surfaces possess better intrinsic ORR activity compared to Pt(111) surfaces, owing to the synergistic action of adjacent Pt and Co active sites which optimizes the binding strength of ORR intermediates to boost overall ORR kinetics. With this understanding, a PtCo3/NC catalyst, comprising PtCo3 nanoparticles exposing predominantly (111) facets dispersed on an N-doped carbon support, is successfully fabricated. PtCo3/NC demonstrates a high specific activity (3.4 mA cm-2 mgPt -1), mass activity (0.67 A mgPt -1), and cycling stability for the ORR in 0.1 M KOH, significantly outperforming a commercial 20 wt.% Pt/C catalyst. Moreover, a zinc-air battery (ZAB) assembled with PtCo3/NC as the air-electrode catalyst delivered an open-circuit voltage of 1.47 V, a specific capacity of 775.1 mAh gZn -1 and excellent operation durability after 200 discharge/charge cycles, vastly superior performance to a ZAB built using commercial Pt/C+IrO2 as the air-electrode catalyst.

3.
Inorg Chem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922608

RESUMO

The oxygen reduction reaction (ORR) plays a vital role in many next-generation electrochemical energy conversion and storage devices, motivating the search for low-cost ORR electrocatalysts possessing high activity and excellent durability. In this work, we demonstrate that iron-cobalt phosphide (FeCoP) nanoparticles encapsulated in a N-doped carbon framework (FeCoP@NC) represent a very promising catalyst for the ORR in alkaline media. The core-shell structured FeCoP@NC catalyst offered outstanding ORR activity with a half-wave potential (E1/2) of 0.86 V vs reversible hydrogen electrode (RHE) and excellent stability in a 0.1 M KOH electrolyte, outperforming commercial Pt/C and many recently reported noble-metal-free ORR electrocatalysts. The superiority of FeCoP@NC as an ORR electrocatalyst relative to Pt/C was further verified in prototype zinc-air batteries (ZABs), with the aqueous and flexible ZABs prepared using FeCoP@NC offering excellent stability, impressive open circuit voltages (1.56 and 1.44 V, respectively), and high maximum power densities (183.5 and 69.7 mW cm-2, respectively). Density functional theory calculations revealed that encapsulating FeCoP nanoparticles in N-doped carbon shells resulted in favorable electron penetration effects, which synergistically regulated the adsorption/desorption of ORR intermediates for optimal ORR performance while also boosting the electronic conductivity. Our findings offer valuable new insights for rational design of transition metal phosphide-based catalysts for the ORR and other electrochemical applications.

4.
Entropy (Basel) ; 26(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392363

RESUMO

Emergence and causality are two fundamental concepts for understanding complex systems. They are interconnected. On one hand, emergence refers to the phenomenon where macroscopic properties cannot be solely attributed to the cause of individual properties. On the other hand, causality can exhibit emergence, meaning that new causal laws may arise as we increase the level of abstraction. Causal emergence (CE) theory aims to bridge these two concepts and even employs measures of causality to quantify emergence. This paper provides a comprehensive review of recent advancements in quantitative theories and applications of CE. It focuses on two primary challenges: quantifying CE and identifying it from data. The latter task requires the integration of machine learning and neural network techniques, establishing a significant link between causal emergence and machine learning. We highlight two problem categories: CE with machine learning and CE for machine learning, both of which emphasize the crucial role of effective information (EI) as a measure of causal emergence. The final section of this review explores potential applications and provides insights into future perspectives.

5.
BMC Genomics ; 24(1): 79, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800937

RESUMO

BACKGROUND: B-box (BBX) zinc-finger transcription factors play crucial roles in plant growth, development, and abiotic stress responses. Nevertheless, little information is available on sugarcane (Saccharum spp.) BBX genes and their expression profiles. RESULTS: In the present study, we characterized 25 SsBBX genes in the Saccharum spontaneum genome database. The phylogenetic relationships, gene structures, and expression patterns of these genes during plant growth and under low-nitrogen conditions were systematically analyzed. The SsBBXs were divided into five groups based on phylogenetic analysis. The evolutionary analysis further revealed that whole-genome duplications or segmental duplications were the main driving force for the expansion of the SsBBX gene family. The expression data suggested that many BBX genes (e.g., SsBBX1 and SsBBX13) may be helpful in both plant growth and low-nitrogen stress tolerance. CONCLUSIONS: The results of this study offer new evolutionary insight into the BBX family members in how sugarcane grows and responds to stress, which will facilitate their utilization in cultivated sugarcane breeding.


Assuntos
Saccharum , Saccharum/genética , Saccharum/metabolismo , Filogenia , Melhoramento Vegetal , Desenvolvimento Vegetal , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
BMC Genomics ; 24(1): 281, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231370

RESUMO

BACKGROUND: Cyclic nucleotide-gated ion channels (CNGCs) are nonselective cation channels that are ubiquitous in eukaryotic organisms. As Ca2+ channels, some CNGCs have also proven to be K+-permeable and involved in plant development and responses to environmental stimuli. Sugarcane is an important sugar and energy crop worldwide. However, reports on CNGC genes in sugarcane are limited. RESULTS: In this study, 16 CNGC genes and their alleles were identified from Saccharum spontaneum and classified into 5 groups based on phylogenetic analysis. Investigation of gene duplication and syntenic relationships between S. spontaneum and both rice and Arabidopsis demonstrated that the CNGC gene family in S. spontaneum expanded primarily by segmental duplication events. Many SsCNGCs showed variable expression during growth and development as well as in tissues, suggesting functional divergence. Light-responsive cis-acting elements were discovered in the promoters of all the identified SsCNGCs, and the expression of most of the SsCNGCs showed a diurnal rhythm. In sugarcane, the expression of some SsCNGCs was regulated by low-K+ treatment. Notably, SsCNGC13 may be involved in both sugarcane development and its response to environmental stimuli, including response to low-K+ stress. CONCLUSION: This study identified the CNGC genes in S. spontaneum and provided insights into the transcriptional regulation of these SsCNGCs during development, circadian rhythm and under low-K+ stress. These findings lay a theoretical foundation for future investigations of the CNGC gene family in sugarcane.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Saccharum , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Saccharum/genética , Saccharum/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Nucleotídeos Cíclicos/metabolismo , Regulação da Expressão Gênica de Plantas
7.
BMC Genomics ; 24(1): 2, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597034

RESUMO

BACKGROUND: Maintaining osmotic equilibrium plays an important role in the survival of cold-water fishes. Heat stress has been proven to reduce the activity of Na+/K+-ATPase in the gill tissue, leading to destruction of the osmotic equilibrium. However, the mechanism of megatemperature affecting gill osmoregulation has not been fully elucidated. RESULTS: In this study, Siberian sturgeon (Acipenser baerii) was used to analyze histopathological change, plasma ion level, and transcriptome of gill tissue subjected to 20℃, 24℃and 28℃. The results showed that ROS level and damage were increased in gill tissue with the increasing of heat stress temperature. Plasma Cl- level at 28℃ was distinctly lower than that at 20℃ and 24℃, while no significant difference was found in Na+ and K+ ion levels among different groups. Transcriptome analysis displayed that osmoregulation-, DNA-repair- and apoptosis-related terms or pathways were enriched in GO and KEGG analysis. Moreover, 194 osmoregulation-related genes were identified. Amongst, the expression of genes limiting ion outflow, occluding (OCLN), and ion absorption, solute carrier family 4, member 2 (AE2) solute carrier family 9, member 3 (NHE3) chloride channel 2 (CLC-2) were increased, while Na+/K+-ATPase alpha (NKA-a) expression was decreased after heat stress. CONCLUSIONS: This study reveals for the first time that the effect of heat stress on damage and osmotic regulation in gill tissue of cold-water fishes. Heat stress increases the permeability of fish's gill tissue, and induces the gill tissue to keep ion balance through active ion absorption and passive ion outflow. Our study will contribute to research of global-warming-caused effects on cold-water fishes.


Assuntos
Perfilação da Expressão Gênica , Brânquias , Animais , Brânquias/metabolismo , Temperatura , Água/metabolismo , Sódio/metabolismo , Adenosina Trifosfatases/metabolismo , Peixes/metabolismo
8.
Fish Shellfish Immunol ; 134: 108584, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36740083

RESUMO

Toll-like receptor 18 (TLR18), a non-mammalian TLR, has been believed to play an important role in anti-bacterial immunity of teleost fishes. UNC93B1 is a classical molecular chaperone that mediates TLRs transport from endoplasmic reticulum to the located membrane. However, TLR18-mediated signal transduction mechanism and the regulatory effect of UNC93B1 to TLR18 are still unclear in teleost fishes. In this study, the coding sequences of TLR18 and UNC93B1 were cloned from Schizothorax prenanti, named spTLR18 and spUNC93B1, respectively. The spTLR18 and spUNC93B1 are 2583 bp and 1878 bp in length, encode 860 and 625 amino acids, respectively. The spTLR18 widely expressed in various tissues with the highest expression level in liver. After stimulation of Aeromonas hydrophila, lipopolysaccharide (LPS) and Poly(I:C), the expression levels of spTLR18 were significantly increased in spleen and head kidney. The spTLR18 located in the cell membrane, while spUNC93B1 located in the cytoplasm. Luciferase and overexpression analysis showed that spTLR18 activated NF-κB and type I IFN signal pathways, and spTLR18-mediated NF-κB activation might depend on the adaptor molecule MyD88. Besides, spUNC93B1 positively regulates spTLR18-mediated NF-κB signal. Our study first uncovers TLR18-UNC93B1-mediated signal transduction mechanism, which contributes to the understanding of TLR signaling pathway in teleost fishes.


Assuntos
Cyprinidae , NF-kappa B , Animais , NF-kappa B/metabolismo , Imunidade Inata , Proteínas de Peixes/genética , Filogenia , Receptores Toll-Like/genética , Transdução de Sinais
9.
Ecotoxicol Environ Saf ; 268: 115694, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984289

RESUMO

Lead (Pb) is a pervasive toxic metal contaminant associated with a high risk of myocardial injury. However, the precise mechanism underlying Pb-induced myocardial injury has yet to be fully elucidated. In this study, a murine model of Pb exposure (0, 1, 5, and 10 mg/kg) was employed to investigate the involvement of neutrophil degranulation in the induction of myocardial injury. Notably, serum levels of cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) increased significantly in Pb-exposed mice, whereas cTnI levels in cardiomyocytes decreased, suggesting that Pb exposure may cause early myocardial injury. Moreover, Pb exposure was found to promote neutrophil degranulation, as evidenced by elevated myeloperoxidase (MPO) and neutrophil elastase (NE) concentrations in both the serum of Pb-exposed workers and Pb-exposed mice, as well as the extracellular supernatant of neutrophils following exposure. However, we found that serum level of cTnI enhanced by Pb exposure is associated with increased NE levels in the serum, but not with MPO levels. Upon treatment with NE inhibitor (sivelestat), the serum level of cTnI markedly reduced in Pb-exposed mice, we found that early myocardial injury is associated with NE levels in the serum. At the molecular level, western blotting analysis revealed an upregulation of ERK1/2 expression in vitro following Pb exposure, suggesting that the activation of the ERK1/2 signaling pathway may underlie the participation of neutrophil degranulation in Pb-induced myocardial injury. In summary, our findings demonstrate that Pb exposure can initiate early myocardial injury by promoting the neutrophil degranulation process, thereby highlighting the potential role of this process in the pathogenesis of Pb-associated myocardial injury.


Assuntos
Chumbo , Neutrófilos , Camundongos , Animais , Neutrófilos/metabolismo , Chumbo/toxicidade , Miócitos Cardíacos/metabolismo , Elastase de Leucócito/metabolismo
10.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373406

RESUMO

Large-scale mortality due to Aeromonas hydrophila (A. hydrophila) infection has considerably decreased the yield of the Chinese pond turtle (Mauremys reevesii). Purslane is a naturally active substance with a wide range of pharmacological functions, but its antibacterial effect on Chinese pond turtles infected by A. hydrophila infection is still unknown. In this study, we investigated the effect of purslane on intestinal morphology, digestion activity, and microbiome of Chinese pond turtles during A. hydrophila infection. The results showed that purslane promoted epidermal neogenesis of the limbs and increased the survival and feeding rates of Chinese pond turtles during A. hydrophila infection. Histopathological observation and enzyme activity assay indicated that purslane improved the intestinal morphology and digestive enzyme (α-amylase, lipase and pepsin) activities of Chinese pond turtle during A. hydrophila infection. Microbiome analysis revealed that purslane increased the diversity of intestinal microbiota with a significant decrease in the proportion of potentially pathogenic bacteria (such as Citrobacter freundii, Eimeria praecox, and Salmonella enterica) and an increase in the abundance of probiotics (such as uncultured Lactobacillus). In conclusion, our study uncovers that purslane improves intestinal health to protect Chinese pond turtles against A. hydrophila infection.


Assuntos
Aeromonas hydrophila , Infecções por Bactérias Gram-Negativas , Portulaca , Tartarugas , Animais , Digestão , Microbioma Gastrointestinal , Tartarugas/microbiologia , Tartarugas/fisiologia , Infecções por Bactérias Gram-Negativas/complicações , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/terapia , Comportamento Alimentar
11.
BMC Plant Biol ; 22(1): 510, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319957

RESUMO

BACKGROUND: Growth regulating factors (GRFs) are transcription factors that regulate diverse biological and physiological processes in plants, including growth, development, and abiotic stress. Although GRF family genes have been studied in a variety of plant species, knowledge about the identification and expression patterns of GRFs in sugarcane (Saccharum spp.) is still lacking. RESULTS: In the present study, a comprehensive analysis was conducted in the genome of wild sugarcane (Saccharum spontaneum) and 10 SsGRF genes were identified and characterized. The phylogenetic relationship, gene structure, and expression profiling of these genes were analyzed entirely under both regular growth and low-nitrogen stress conditions. Phylogenetic analysis suggested that the 10 SsGRF members were categorized into six clusters. Gene structure analysis indicated that the SsGRF members in the same group were greatly conserved. Expression profiling demonstrated that most SsGRF genes were extremely expressed in immature tissues, implying their critical roles in sugarcane growth and development. Expression analysis based on transcriptome data and real-time quantitative PCR verification revealed that GRF1 and GRF3 were distinctly differentially expressed in response to low-nitrogen stress, which meant that they were additional participated in sugarcane stress tolerance. CONCLUSION: Our study provides a scientific basis for the potential functional prediction of SsGRF and will be further scrutinized by examining their regulatory network in sugarcane development and abiotic stress response, and ultimately facilitating their application in cultivated sugarcane breeding.


Assuntos
Saccharum , Saccharum/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Melhoramento Vegetal , Nitrogênio/metabolismo
12.
New Phytol ; 233(4): 1953-1965, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34874076

RESUMO

Karyotypes provide key cytogenetic information on the phylogenetic relationships and evolutionary origins in related eukaryotic species. Despite our knowledge of the chromosome numbers of sugarcane and its wild relatives, the chromosome composition and evolution among the species in the Saccharum complex have been elusive owing to the complex polyploidy and the large numbers of chromosomes of these species. Oligonucleotide-based chromosome painting has become a powerful tool of cytogenetic studies especially for plant species with large numbers of chromosomes. We developed oligo-based chromosome painting probes for all 10 chromosomes in Saccharum officinarum (2n = 8x = 80). The 10 painting probes generated robust fluorescence in situ hybridization signals in all plant species within the Saccharum complex, including species in the genera Saccharum, Miscanthus, Narenga and Erianthus. We conducted comparative chromosome analysis using the same set of probes among species from four different genera within the Saccharum complex. Excitingly, we discovered several novel cytotypes and chromosome rearrangements in these species. We discovered that fusion from two different chromosomes is a common type of chromosome rearrangement associated with the species in the Saccharum complex. Such fusion events changed the basic chromosome number and resulted in distinct allopolyploids in the Saccharum complex.


Assuntos
Coloração Cromossômica , Saccharum , Coloração Cromossômica/métodos , Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente/métodos , Filogenia , Saccharum/genética
13.
Fish Shellfish Immunol ; 131: 707-717, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309325

RESUMO

TLR5, as a member of Toll-like receptors (TLRs) family in mammals, is responsible for recognizing bacterial flagellin and initiating innate immunity, but its function is still unclear in fish species. In this study, two family members of TLR5 were cloned and identified from Sinocyclocheilus grahami (S. grahami), named sgTLR5a and sgTLR5b. The length of coding sequence of sgTLR5a and sgTLR5b is 2,622 bp and 2,658 bp, encoding 873 and 885 amino acids, respectively. Molecular phylogenetic analysis indicates that sgTLR5a and sgTLR5b have the closest genetic relationship with TLR5M (membrane-type) of Cyprinus carpio and Schizothorax prenanti, respectively. sgTLR5a and sgTLR5b were widely expressed in various tested tissues, of which the expression levels were the highest in skin tissue. After stimulations of Aeromonas hydrophila (A. hydrophila) and flagellin, the expression levels of sgTLR5a and sgTLR5b in liver, spleen and head kidney tissues were strongly up-regulated, but LPS stimulation only increased the expression of sgTLR5b in these tissues. The luciferase reporter assay displayed that sgTLR5a and sgTLR5b could specifically recognize bacterial flagellin and A. hydrophila and activate the downstream NF-κB signaling pathway in HEK293T cells. Moreover, the overexpression of sgTLR5a and sgTLR5b in EPC cells up-regulated the expression levels of IL-8 and TNF. sgTLR5a and sgTLR5b were observed to locate in the intracellular region by confocal microscope. Interestingly, we found that the NF-κB signaling pathway was positively regulated by co-transfecting sgTLR5a or sgTLR5b with TLR trafficking chaperone sgUNC93B1. In conclusion, our results reveal sgTLR5a and sgTLR5b may play an important role in antibacterial response by activating the NF-κB signaling pathway.


Assuntos
Carpas , Cyprinidae , Animais , Humanos , Carpas/metabolismo , Receptor 5 Toll-Like , Flagelina/genética , Proteínas de Peixes/química , NF-kappa B/genética , NF-kappa B/metabolismo , Filogenia , Células HEK293 , Regulação da Expressão Gênica , Sequência de Aminoácidos , Imunidade Inata/genética , Mamíferos/metabolismo
14.
BMC Endocr Disord ; 22(1): 94, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395842

RESUMO

BACKGROUND: Both obesity and subclinical hypothyroidism (SCH) have adverse effects on human body, but the relationship between these two conditions remains inconsistent. The presence of thyroid autoantibodies influences thyroid hormone levels, and may further mediate the interaction between obesity and SCH. This study aimed to explore the association among obesity, SCH and thyroid autoantibodies. METHODS: This study was a cross-sectional survey of 2505 subjects. Obesity was defined as a body mass index ≥28 kg/m2. Serum concentrations of thyroid hormones, thyroid peroxidase antibody (TPO-Ab) and thyroglobulin antibody (Tg-Ab) were examined. Logistic analysis was used to explore the relation among obesity, SCH and thyroid autoantibodies. RESULTS: A proportion of 11.54% (289/2505) subjects were obese, and 165 subjects had SCH. The positive rates of thyroid autoantibodies, TPO-Ab and Tg-Ab were 17.64% (442/2505), 11.02% (276/2505) and 14.13% (354/2505), respectively. The proportion of SCH was significantly higher in obese than nonobese subjects among those with positive thyroid autoantibodies [22.41% (13/58) vs. 11.72% (45/384), p = 0.025, χ2 test]. Moreover, obesity was significantly associated with SCH in the presence of thyroid autoantibodies after adjusting for confounding factors (OR 2.212, 95% CI 1.103 to 4.433, p = 0.025). A higher proportion of subjects with obesity had Tg-Ab positivity [17.99% (52/289) vs. 13.63% (302/2216), p = 0.045, χ2 test], and obesity remained significantly associated with Tg-Ab positivity by multiple logistic analysis (OR 1.504, 95% CI 1.077 to 2.101, p = 0.017). CONCLUSIONS: Obesity was associated with SCH in the presence of thyroid autoantibodies. Examination of SCH is recommended in obese subjects with thyroid autoantibody positivity.


Assuntos
Hipotireoidismo , Iodeto Peroxidase , Autoanticorpos , Estudos Transversais , Humanos , Hipotireoidismo/complicações , Hipotireoidismo/diagnóstico , Hipotireoidismo/epidemiologia , Obesidade/complicações , Hormônios Tireóideos
15.
Genomics ; 113(4): 1671-1680, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838277

RESUMO

Ammonium transporters (AMTs) are plasma membrane proteins that exclusively transport ammonium/ammonia. It is essential for the nitrogen demand of plantsby AMT-mediated acquisition of ammonium from soils. The molecular characteristics and evolutionary history of AMTs in Saccharum spp. remain unclear. We comprehensively evaluated the AMT gene family in the latest release of the S. spontaneum genome and identified 6 novel AMT genes. These genes belong to 3 clusters: AMT2 (2 genes), AMT3 (3 genes), and AMT4 (one gene). Evolutionary analyses suggested that the S. spontaneum AMT gene family may have expanded via whole-genome duplication events. All of the 6 AMT genes are located on 5 chromosomes of S. spontaneum. Expression analyses revealed that AMT3;2 was highly expressed in leaves and in the daytime, and AMT2;1/3;2/4 were dynamic expressed in different leaf segments, as well as AMT2;1/3;2 demonstrated a high transcript accumulation level in leaves and roots and were significantly dynamic expressed under low-nitrogen conditions. The results suggest the functional roles of AMT genes on tissue expression and ammonium absorption in Saccharum. This study will provide some reference information for further elucidation of the functional mechanism and regulation of expression of the AMT gene family in Saccharum.


Assuntos
Compostos de Amônio , Proteínas de Transporte de Cátions , Saccharum , Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo
16.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012702

RESUMO

Erianthus arundinaceus is a valuable gene reservoir for sugarcane improvement. However, insufficient molecular markers for high-accuracy identification and tracking of the introgression status of E. arundinaceus chromatin impede sugarcane breeding. Fortunately, suppression subtractive hybridization (SSH) technology provides an excellent opportunity for the development of high-throughput E. arundinaceus-specific molecular markers at a reasonable cost. In this study, we constructed a SSH library of E. arundinaceus. In total, 288 clones of E. arundinaceus-specific repetitive sequences were screened out and their distribution patterns on chromosomes were characterized by fluorescence in situ hybridization (FISH). A subtelomeric repetitive sequence Ea086 and a diffusive repetitive sequence Ea009, plus 45S rDNA-bearing E. arundinaceus chromosome repetitive sequence EaITS were developed as E. arundinaceus-specific molecular markers, namely, Ea086-128, Ea009-257, and EaITS-278, covering all the E. arundinaceus chromosomes for high-accuracy identification of putative progeny. Both Ea086-128 and Ea009-257 were successfully applied to identify the authenticity of F1, BC1, BC2, BC3, and BC4 progeny between sugarcane and E. arundinaceus. In addition, EaITS-278 was a 45S rDNA-bearing E. arundinaceus chromosome-specific molecular marker for rapid tracking of the inherited status of this chromosome in a sugarcane background. Three BC3 progeny had apparently lost the 45S rDNA-bearing E. arundinaceus chromosome. We reported herein a highly effective and reliable SSH-based technology for discovery of high-throughput E. arundinaceus-specific sequences bearing high potential as molecular markers. Given its reliability and savings in time and efforts, the method is also suitable for development of species-specific molecular markers for other important wild relatives to accelerate introgression of wild relatives into sugarcane.


Assuntos
Saccharum , Cromatina/genética , Cromossomos de Plantas/genética , DNA Ribossômico , Marcadores Genéticos , Hibridização Genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Poaceae/genética , Reprodutibilidade dos Testes , Saccharum/genética
17.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233280

RESUMO

The lack of detailed information on nutritional requirement results in limited feeding in Siberian sturgeon. In this study, resveratrol, a versatile natural extract, was supplemented in the daily diet, and the digestive ability and microbiome were evaluated in the duodena and valvular intestines of Siberian sturgeon. The results showed that resveratrol increased the activity of pepsin, α-amylase, and lipase, which was positively associated with an increase in the digestive ability, but it did not influence the final body weight. Resveratrol improved the digestive ability probably by distinctly enhancing intestinal villus height. Microbiome analysis revealed that resveratrol changed the abundance and composition of the microbial community in the intestine, principally in the duodenum. Random forests analysis found that resveratrol significantly downregulated the abundance of potential pathogens (Citrobacter freundii, Vibrio rumoiensis, and Brucella melitensis), suggesting that resveratrol may also improve intestinal health. In summary, our study revealed that resveratrol improved digestive ability and intestinal health, which can contribute to the development of functional feed in Siberian sturgeon.


Assuntos
Ração Animal , Pepsina A , Ração Animal/análise , Animais , Dieta , Peixes , Intestinos/química , Lipase , Resveratrol/farmacologia , alfa-Amilases
18.
BMC Plant Biol ; 21(1): 139, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726673

RESUMO

BACKGROUND: In recent years, sugarcane has attracted increasing attention as an energy crop. Wild resources are widely used to improve the narrow genetic base of sugarcane. However, the infertility of F1 hybrids between Saccharum officinarum (S. officinarum) and Erianthus arundinaceus (E. arundinaceus) has hindered sugarcane breeding efforts. To discover the cause of this infertility, we studied the hybridization process from a cytological perspective. RESULTS: We examined the meiotic process of pollen mother cells (PMCs) in three F1 hybrids between S. officinarum and E. arundinaceus. Cytological analysis showed that the male parents, Hainan 92-77 and Hainan 92-105, had normal meiosis. However, the meiosis process in F1 hybrids showed various abnormal phenomena, including lagging chromosomes, micronuclei, uneven segregation, chromosome bridges, and inability to form cell plates. Genomic in situ hybridization (GISH) showed unequal chromatin distribution during cell division. Interestingly, 96.70% of lagging chromosomes were from E. arundinaceus. Furthermore, fluorescence in situ hybridization (FISH) was performed using 45S rDNA and 5S rDNA as probes. Either 45S rDNA or 5S rDNA sites were lost during abnormal meiosis, and results of unequal chromosomal separation were also clearly observed in tetrads. CONCLUSIONS: Using cytogenetic analysis, a large number of meiotic abnormalities were observed in F1. GISH further confirmed that 96.70% of the lagging chromosomes were from E. arundinaceus. Chromosome loss was found by further investigation of repeat sequences. Our findings provide insight into sugarcane chromosome inheritance to aid innovation and utilization in sugarcane germplasm resources.


Assuntos
Meiose/genética , Meiose/fisiologia , Meristema/genética , Poaceae/crescimento & desenvolvimento , Poaceae/genética , Pólen/genética , Saccharum/crescimento & desenvolvimento , Saccharum/genética , Quimera , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Genes de Plantas , Variação Genética , Genótipo , Hibridização Genética , Hibridização in Situ Fluorescente , Meristema/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento
19.
BMC Plant Biol ; 21(1): 395, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425748

RESUMO

BACKGROUND: The identification and functional analysis of genes that improve tolerance to low potassium stress in S. spontaneum is crucial for breeding sugarcane cultivars with efficient potassium utilization. Calcineurin B-like (CBL) protein is a calcium sensor that interacts with specific CBL-interacting protein kinases (CIPKs) upon plants' exposure to various abiotic stresses. RESULTS: In this study, nine CBL genes were identified from S. spontaneum. Phylogenetic analysis of 113 CBLs from 13 representative plants showed gene expansion and strong purifying selection in the CBL family. Analysis of CBL expression patterns revealed that SsCBL01 was the most commonly expressed gene in various tissues at different developmental stages. Expression analysis of SsCBLs under low K+ stress indicated that potassium deficiency moderately altered the transcription of SsCBLs. Subcellular localization showed that SsCBL01 is a plasma membrane protein and heterologous expression in yeast suggested that, while SsCBL01 alone could not absorb K+, it positively regulated K+ absorption mediated by the potassium transporter SsHAK1. CONCLUSIONS: This study provided insights into the evolution of the CBL gene family and preliminarily demonstrated that the plasma membrane protein SsCBL01 was involved in the response to low K+ stress in S. spontaneum.


Assuntos
Calcineurina/genética , Genoma de Planta , Filogenia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Deficiência de Potássio/genética , Saccharum/genética , Membrana Celular , Produtos Agrícolas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Análise de Sequência de Proteína
20.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445245

RESUMO

Sugarcane is of important economic value for producing sugar and bioethanol. Tripidium arundinaceum (old name: Erianthus arundinaceum) is an intergeneric wild species of sugarcane that has desirable resistance traits for improving sugarcane varieties. However, the scarcity of chromosome markers has hindered the cytogenetic study of T. arundinaceum. Here we applied maize chromosome painting probes (MCPs) to identify chromosomes in sorghum and T. arundinaceum using a repeated fluorescence in situ hybridization (FISH) system. Sequential FISH revealed that these MCPs can be used as reliable chromosome markers for T. arundinaceum, even though T. arundinaceum has diverged from maize over 18 MYs (million years). Using these MCPs, we identified T. arundinaceum chromosomes based on their sequence similarity compared to sorghum and labeled them 1 through 10. Then, the karyotype of T. arundinaceum was established by multiple oligo-FISH. Furthermore, FISH results revealed that 5S rDNA and 35S rDNA are localized on chromosomes 5 and 6, respectively, in T. arundinaceum. Altogether, these results represent an essential step for further cytogenetic research of T. arundinaceum in sugarcane breeding.


Assuntos
Coloração Cromossômica , Cromossomos de Plantas/genética , Saccharum/genética , Sondas de DNA/química , Sondas de DNA/genética , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA